FIST2FAC: The future of Navy combat training?

April 11, 2016

ARLINGTON, Va.--Lookouts on the bridge of the USS Michael Murphy (DDG-112) scanned the surrounding ocean. All seemed well--clear skies, peaceful waters, busy merchant ship traffic.

Suddenly, a swarm of small fast-attack boats buzzed toward the destroyer. Within moments, a machine gunner shot withering streams of 50-caliber bullets at the approaching enemies, forcing their retreat.

This wasn't a real attack on an American ship, but a tribute to the realism of the Fleet Integrated Synthetic Training/Testing Facility (FIST2FAC)--which develops, tests and demonstrates simulator training technology blending live-action exercises with virtual assets and adversaries.

"This is the future of training for the Navy," said Dr. Terry Allard, head of the Warfighter Performance Department at the Office of Naval Research (ONR). "With simulation, you can explore endless possibilities without the expense and logistical challenges of putting hundreds of ships at sea and aircraft in the sky."

Recently, ONR--with support from members of its Reserve Component--demonstrated new and improved training technology at FIST2FAC, located on Ford Island, Hawaii. FIST2FAC combines a hassle-free setup, software and gaming technology to help naval forces develop strategies for diverse missions and operations. It allows Sailors to interact with artificially intelligent forces in countless virtual settings--and train for multiple missions simultaneously. The system can replicate situations involving aircraft carriers, helicopters (in this case, a squadron from Marine Corps Base Hawaii), lethal and nonlethal weapons, and more.

"FIST2FAC was created in response to an urgent need for a more portable way for ships to train in any given operating area," said Glenn White, ONR's integration and transition manager for the project. "It allows Sailors to 'train like they fight' by presenting realistic forces in a visual, tactical and operational environment."

During the demonstration on Ford Island, Sailors manning a virtual ship were pitted against several fast-attack craft in waters crowded with merchant traffic. They quickly determined the boats to be hostile and engaged them with machine-gun fire from both the ship and a virtual helicopter.

FIST2FAC, which was developed with support from the Naval Undersea Warfare Center Keyport Division, has demonstrated simulator technology since 2010. The latest event showcased improved capabilities and new enhancements to FIST2FAC training simulators: White said the technology demonstrated at FIST2FAC is a valuable tool for the Navy for two main reasons--savings and security.

The software is reusable and can be modified for different environments. By comparison, it costs about $250,000 just to get an aircraft carrier out for live training--and approximately $6 million to fuel a strike group for a week. A live event lasting six to 10 hours may cost a million dollars.

The ability to recreate so many combat scenarios anywhere also is useful in training for any challenge a ship might face worldwide--from vessel maintenance to landing a fighter jet to navigating hostile waters.

Currently, FIST2FAC is shore based, but one day White wants to make the capabilities developed there available to ships at sea. "The ultimate goal is to wrap a destroyer in an augmented world where everyone throughout the ship can see virtual vessels, aircraft and adversaries and train to respond appropriately."
-end-


Office of Naval Research

Related Aircraft Articles from Brightsurf:

University of South Carolina redefining aircraft production process
The University of South Carolina College of Engineering and Computing will transform the manufacturing and simulation processes used in aircraft production through a $5.7 million NASA grant.

Small altitude changes could cut climate impact of aircraft by up to 59%
Altering the altitudes of less than 2% of flights could reduce contrail-linked climate change by 59%, says a new Imperial study.

Small altitude changes could cut the climate impact of aircraft
Contrails -- the white, fluffy streaks in the sky that form behind planes -- can harm the environment.

New electrodes could increase efficiency of electric vehicles and aircraft
The rise in popularity of electric vehicles and aircraft presents the possibility of moving away from fossil fuels toward a more sustainable future.

Composite metal foam outperforms aluminum for use in aircraft wings
The leading edges of aircraft wings have to meet a very demanding set of characteristics.

Particulate matter from aircraft engines affects airways
In a unique, innovative experiment, researchers under the leadership of the University of Bern have investigated the effect of exhaust particles from aircraft turbine engines on human lung cells.

How to ice-proof the next generation of aircraft
To prevent ice formation on aircraft during flight, current systems utilize the heat generated by burning fuel, but these high-temperature, fuel-dependent systems cannot be used on the proposed all-electric, temperature-sensitive materials of next-generation aircraft.

Putting hybrid-electric aircraft performance to the test
Although hybrid-electric cars are becoming commonplace, similar technology applied to airplanes comes with significantly different challenges.

Aircraft microbiome much like that of homes and offices, study finds
What does flying in a commercial airliner have in common with working at the office or relaxing at home?

Sequential model chips away at mysteries of aircraft
Ice accumulation on aircraft wings is a common contributing factor to airplane accidents.

Read More: Aircraft News and Aircraft Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.