Nav: Home

Viral fossils reveal how our ancestors may have eliminated an ancient infection

April 11, 2017

Scientists have uncovered how our ancestors may have wiped out an ancient retrovirus around 11 million years ago.

Retroviruses, which include human immunodeficiency virus (HIV), are abundant in nature. Unlike other viruses, which do not usually leave a physical trace of their existence, retroviruses include a step in their life cycle where their genetic material is integrated into the genome of their host. This integration has created a genetic fossil record of extinct retroviruses that is preserved in the genomes of modern organisms.

Writing in the journal eLife, researchers from the Rockefeller University and the Howard Hughes Medical Institute (HHMI), US, set out to discover how extinct viral lineages could have been eliminated. To do this, they analysed retroviral fossils left by human endogenous retrovirus T (HERV-T), which replicated in our primate ancestors for approximately 25 million years before it was eradicated about 11 million years ago.

Working with Robert Gifford from the University of Glasgow, the team first compiled a near-complete catalog of HERV-T fossils in old-world monkey and ape genomes. They then reconstructed the HERV-T retrovirus' outer envelope protein - a type of protein that allows a virus particle to bind to cells and begin the viral replication cycle.

"Our analyses first suggested that HERV-T likely used a cell-surface protein called MCT-1 to bind to cells and infect ancient old-world primates," says first author Daniel Blanco-Melo, who carried out the study at the Rockefeller University but is now a postdoctoral researcher at the Icahn School of Medicine at Mount Sinai, New York.

"Next, we identified one particular fossilised HERV-T gene in the human genome that encodes an unexpectedly well-preserved envelope protein. This gene was absent in non-hominid primate genomes, but was integrated into an ancestral hominid genome around 13 to 19 million years ago. We believe its function may have been switched around this time so that it could block infection by causing MCT-1 depletion from cell surfaces."

Taken together, these findings suggest a scenario in which HERV-T began to infiltrate primate germlines (series of cells that are seen as continuing through successive generations of an organism) using MCT-1 as a receptor. Ancestral hominids later evolved a defence mechanism whereby they switched a HERV-T gene to serve as an antiviral gene against itself.

"Broadly speaking, this study shows how analysing viral fossils can provide a wealth of insight into events that occurred in the distant past," says senior author Paul Bieniasz, HHMI Investigator and Professor of Retrovirology at the Rockefeller University. "In particular, it represents an example of how viruses themselves can provide the genetic material that animals use to combat them, sometimes leading to their own extinction."
-end-
Reference

The paper 'Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors' can be freely accessed online at http://dx.doi.org/10.7554/eLife.22519. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contacts

Emily Packer, eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife is a unique collaboration between the funders and practitioners of research to improve the way important research is selected, presented, and shared. eLife publishes outstanding works across the life sciences and biomedicine -- from basic biological research to applied, translational, and clinical studies. All papers are selected by active scientists in the research community. Decisions and responses are agreed by the reviewers and consolidated by the Reviewing Editor into a single, clear set of instructions for authors, removing the need for laborious cycles of revision and allowing authors to publish their findings quickly. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust. Learn more at elifesciences.org.

eLife

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"