Nav: Home

'Indistinguishable photons' key to advancing quantum technologies

April 11, 2017

WASHINGTON, D.C., April 11, 2017 -- To really take off, advanced quantum information processing will require getting a better (experimental) grasp of an essential phenomenon called "indistinguishable photons." A high degree of "indistinguishability" requires almost complete wave-packet overlap, or perfect photon matching, of energy, space, time and polarization.

While many types of single-photon emitters such as semiconductor quantum dots have already demonstrated generation of indistinguishable photons, a group of researchers from the University of Tsukuba and Japan's National Institute for Materials Science looked to using a nitrogen impurity center found in III-V compound semiconductors as a novel single-photon source. They report their results this week in the journal Applied Physics Letters, from AIP Publishing.

Nitrogen luminescence centers within III-V compound semiconductors, composed of elements in columns III and IV of the periodic table such as GaAs, show a sharp emission spectrum corresponding to an energy state known as an "isoelectronic trap." Single-photon generation from these isoelectronic traps is highly desirable because of the homogeneity it provides, emitting photons from multiple centers with the same energy.

"Our studies confirmed that isoelectronic traps do indeed have a long coherence time, which is one of the necessary conditions for creating an indistinguishable photon," said Michio Ikezawa, an associate professor at Pure and Applied Sciences, University of Tsukuba.

For the study, the group first evaluated the indistinguishability of photons emitted from a luminescence center in nitrogen delta-doped GaAs by two-photon interference. They also investigated its time dependence, which revealed important information about the timescale of decoherence (said another way, when the quantum system blurs and displays classical state behavior) that can be challenging to obtain via other methods.

For this work, the "emission center" that acts as an isoelectronic trap is formed by the impurity within GaAs where nitrogen has replaced arsenic. "When the sample is photoexcited, each trap can capture one electron-hole pair and emit a single photon by a radiative recombination of them," Ikezawa said.

These nitrogen impurities are then "doped within a very thin two-dimensional layer by the so-called delta-doping technique during metal organic chemical vapor deposition growth," Ikezawa said. "Using this technique, a single luminescence center can be selected with a conventional optical microscope."

Measuring the indistinguishability offered surprising insight. "The indistinguishability was 0.24, which was independent of the time interval between 2 to 4 nanoseconds," Ikezawa said. "This was somewhat surprising compared with previous studies of quantum dots, and we concluded that there's a very fast dephasing mechanism within 2 nanoseconds in our sample."

The group's results are important not just because they are the first demonstration of measuring two-photon interference of indistinguishable photons created by impurity centers in III-IV semiconductors, but also because they explore similarities and differences with typical quantum dots for decoherence mechanisms.

As far as applications, "indistinguishable photons are very important for quantum information technology such as quantum teleportation and linear optical quantum computation," Ikezawa said. "Our goal is to be able to provide many photon sources that generate indistinguishable photons in an integrated form in a semiconductor chip."

While semiconductor quantum dots have been intensively studied with similar aims, "it's difficult in principle to make the energy of photons obtained from many quantum dots the same so that they're indistinguishable from each other," Ikezawa said. "The indistinguishability obtained this time wasn't high enough. It's thought to be caused by the high-speed relaxation mechanism we reported, so a future task will be to clarify the mechanism and find a method to suppress it."
The article, "Quantum interference of two photons emitted from a luminescence center in GaAs:N," is authored by Michio Iwezawa, Liao Zhang, Yoshiki Sakuma and Yasuaki Masumoto. The article will appear in the journal Applied Physics Letters on April 11, 2017 (DOI: 10.1063/1.4979520). After that date, it can be accessed at


Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See

American Institute of Physics

Related Quantum Dots Articles:

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
ICFO develops the first graphene-based camera, capable of imaging visible and infrared light at the same time.
Platelets instead of quantum dots
A team of researchers led by ETH Zurich professor David Norris has developed a model to clarify the general mechanism of nanoplatelet formation.
Quantum dots illuminate transport within the cell
Biophysicists from Utrecht University have developed a strategy for using light-emitting nanocrystals as a marker in living cells.
'Flying saucer' quantum dots hold secret to brighter, better lasers
By carefully controlling the size of the quantum dots, the researchers can 'tune' the frequency, or color, of the emitted light to any desired value.
'Flying saucer' colloidal quantum dots produce brighter, better lasers
A multi-institutional team of researchers from Canada and the US has demonstrated steady state lasing with solution-processed nanoparticles called 'colloidal quantum dots,' an important step on the path to improving laser tools for fiber optics, video projectors and more accurate medical testing technology.
Quantum dots with impermeable shell: A powerful tool for nanoengineering
Depending on their applications, quantum dots need to be tailored in terms of their structure and properties.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
A new form of hybrid photodetectors with quantum dots and graphene
ICFO researchers develop a hybrid photodetector comprising an active colloidal quantum dot photodiode integrated with a graphene phototransistor.
ORNL demonstrates large-scale technique to produce quantum dots
ORNL demonstrates a method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications.
First single-enzyme method to produce quantum dots revealed
Three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method.

Related Quantum Dots Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...