Nav: Home

Feinstein Institute examines use of antiparasitic drug as new treatment for brain tumors

April 11, 2017

MANHASSET, NY -- Marc Symons, PhD, professor in The Feinstein Institute for Medical Research's Karches Center for Oncology Research, is examining if a common medication administered to treat pinworms, could replace the current treatment used for certain brain cancers. These findings, which are published today in the Feinstein Institute Press's peer-reviewed, open-access journal Molecular Medicine, could help to extend the lives of patients suffering from one of the most common types of brain tumors -- low-grade glioma.

Low-grade glioma is a tumor that originates from cells that support and protect the brain's nervous system. Treatments for these tumors include surgery, radiotherapy and chemotherapy. Brain tumor chemotherapy is challenging as most drugs cannot penetrate the blood-brain barrier, a natural defense mechanism that prevents substances in the bloodstream from getting into the brain. For example, vincristine is a drug that is routinely used as part of different drug cocktails for the treatment of brain tumors, even though it is rather toxic and very poorly crosses the blood-brain barrier.

Dr. Symons and colleagues examined mebendazole, a medication that is used to treat parasitic pinworms and that in previous studies had been found to be effective in the treatment of glioma tumors. By studying how mebendazole kills isolated tumor cells in the laboratory, they showed that it works in exactly the same way as vincristine. They also found however, that while mebendazole effectively slowed down the growth of glioma tumors, vincristine did not work at all.

"We were rather surprised to see that vincristine, which is currently used to treat a range of different brain tumors, was totally ineffective in our in vivo glioma model," said Dr. Symons. "In contrast, in the same model, mebendazole performed quite well, most likely because mebendazole crosses the blood-brain barrier and reaches the tumor much better than vincristine. The reason that vincristine may be erroneously believed to be effective for the treatment of brain tumors is that it always has been used in combination with other treatments."

Based on the new results-- and due to the fact that vincristine often has severe side effects in comparison to relatively mild reactions to mebendzole -- Dr. Symons and his team are now strongly motivated to initiate clinical trials to test whether vincristine can be exchanged by mebendazole in the treatment of brain tumors.

"Sometimes innovation can be looking at an existing treatment in a new light," said Kevin J. Tracey, MD, president and CEO of the Feinstein Institute. "This new approach needs to be tested in clinical trials, but with Dr. Symons' new findings we may be closer to a new treatment option that could prolong the lives of the patients suffering from low-grade glioma and other brain tumors."
-end-
About the Feinstein Institute

The Feinstein Institute for Medical Research is the research arm of Northwell Health, the largest healthcare provider in New York. Home to 50 research laboratories and to clinical research throughout dozens of hospitals and outpatient facilities, the 3,500 researchers and staff of the Feinstein are making breakthroughs in molecular medicine, genetics, oncology, brain research, mental health, autoimmunity, and bioelectronic medicine - a new field of science that has the potential to revolutionize medicine. For more information about how we empower imagination and pioneer discovery, visit FeinsteinInstitute.org.

About Molecular Medicine

Molecular Medicine is an open access, international, peer-reviewed biomedical journal published by The Feinstein Institute for Medical Research. Molecular Medicine promotes the understanding of normal body functioning and disease pathogenesis at the cellular and molecular levels, allowing researchers and physician-scientists to use that knowledge in the design of specific tools for disease diagnosis, treatment, prognosis, and prevention. For more information, visit molmed.org.

Northwell Health

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.