Nav: Home

Feinstein Institute examines use of antiparasitic drug as new treatment for brain tumors

April 11, 2017

MANHASSET, NY -- Marc Symons, PhD, professor in The Feinstein Institute for Medical Research's Karches Center for Oncology Research, is examining if a common medication administered to treat pinworms, could replace the current treatment used for certain brain cancers. These findings, which are published today in the Feinstein Institute Press's peer-reviewed, open-access journal Molecular Medicine, could help to extend the lives of patients suffering from one of the most common types of brain tumors -- low-grade glioma.

Low-grade glioma is a tumor that originates from cells that support and protect the brain's nervous system. Treatments for these tumors include surgery, radiotherapy and chemotherapy. Brain tumor chemotherapy is challenging as most drugs cannot penetrate the blood-brain barrier, a natural defense mechanism that prevents substances in the bloodstream from getting into the brain. For example, vincristine is a drug that is routinely used as part of different drug cocktails for the treatment of brain tumors, even though it is rather toxic and very poorly crosses the blood-brain barrier.

Dr. Symons and colleagues examined mebendazole, a medication that is used to treat parasitic pinworms and that in previous studies had been found to be effective in the treatment of glioma tumors. By studying how mebendazole kills isolated tumor cells in the laboratory, they showed that it works in exactly the same way as vincristine. They also found however, that while mebendazole effectively slowed down the growth of glioma tumors, vincristine did not work at all.

"We were rather surprised to see that vincristine, which is currently used to treat a range of different brain tumors, was totally ineffective in our in vivo glioma model," said Dr. Symons. "In contrast, in the same model, mebendazole performed quite well, most likely because mebendazole crosses the blood-brain barrier and reaches the tumor much better than vincristine. The reason that vincristine may be erroneously believed to be effective for the treatment of brain tumors is that it always has been used in combination with other treatments."

Based on the new results-- and due to the fact that vincristine often has severe side effects in comparison to relatively mild reactions to mebendzole -- Dr. Symons and his team are now strongly motivated to initiate clinical trials to test whether vincristine can be exchanged by mebendazole in the treatment of brain tumors.

"Sometimes innovation can be looking at an existing treatment in a new light," said Kevin J. Tracey, MD, president and CEO of the Feinstein Institute. "This new approach needs to be tested in clinical trials, but with Dr. Symons' new findings we may be closer to a new treatment option that could prolong the lives of the patients suffering from low-grade glioma and other brain tumors."
-end-
About the Feinstein Institute

The Feinstein Institute for Medical Research is the research arm of Northwell Health, the largest healthcare provider in New York. Home to 50 research laboratories and to clinical research throughout dozens of hospitals and outpatient facilities, the 3,500 researchers and staff of the Feinstein are making breakthroughs in molecular medicine, genetics, oncology, brain research, mental health, autoimmunity, and bioelectronic medicine - a new field of science that has the potential to revolutionize medicine. For more information about how we empower imagination and pioneer discovery, visit FeinsteinInstitute.org.

About Molecular Medicine

Molecular Medicine is an open access, international, peer-reviewed biomedical journal published by The Feinstein Institute for Medical Research. Molecular Medicine promotes the understanding of normal body functioning and disease pathogenesis at the cellular and molecular levels, allowing researchers and physician-scientists to use that knowledge in the design of specific tools for disease diagnosis, treatment, prognosis, and prevention. For more information, visit molmed.org.

Northwell Health

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...