Nav: Home

Physicists discover hidden aspects of electrodynamics

April 11, 2017

Radio waves, microwaves and even light itself are all made of electric and magnetic fields. The classical theory of electromagnetism was completed in the 1860s by James Clerk Maxwell. At the time, Maxwell's theory was revolutionary, and provided a unified framework to understand electricity, magnetism and optics. Now, new research led by LSU Department of Physics & Astronomy Assistant Professor Ivan Agullo, with colleagues from the Universidad de Valencia, Spain, advances knowledge of this theory. Their recent discoveries have been published in Physical Review Letters.

Maxwell's theory displays a remarkable feature: it remains unaltered under the interchange of the electric and magnetic fields, when charges and currents are not present. This symmetry is called the electric-magnetic duality.

However, while electric charges exist, magnetic charges have never been observed in nature. If magnetic charges do not exist, the symmetry also cannot exist. This mystery has motivated physicists to search for magnetic charges, or magnetic monopoles. However, no one has been successful. Agullo and his colleagues may have discovered why.

"Gravity spoils the symmetry regardless of whether magnetic monopoles exist or not. This is shocking. The bottom line is that the symmetry cannot exist in our universe at the fundamental level because gravity is everywhere," Agullo said.

Gravity, together with quantum effects, disrupts the electric-magnetic duality or symmetry of the electromagnetic field.

Agullo and his colleagues discovered this by looking at previous theories that illustrate this phenomenon among other types of particles in the universe, called fermions, and applied it to photons in electromagnetic fields.

"We have been able to write the theory of the electromagnetic field in a way that very much resembles the theory of fermions, and prove this absence of symmetry by using powerful techniques that were developed for fermions," he said.

This new discovery challenges assumptions that could impact other research including the study of the birth of the universe.

The Big Bang

Satellites collect data from the radiation emitted from the Big Bang, which is called the Cosmic Microwave Background, or CMB. This radiation contains valuable information about the history of the universe.

"By measuring the CMB, we get precise information on how the Big Bang happened," Agullo said.

Scientists analyzing this data have assumed that the polarization of photons in the CMB is not affected by the gravitational field in the universe, which is true only if electromagnetic symmetry exists. However, since this new finding suggests that the symmetry does not exist at the fundamental level, the polarization of the CMB can change throughout cosmic evolution. Scientists may need to take this into consideration when analyzing the data. The focus of Agullo's current research is on how much this new effect is.
This research is supported by the National Science Foundation grants PHY-1403943 and PHY-1552603.

Louisiana State University

Related Magnetic Fields Articles:

Are gamma-ray bursts powered by a star's collapsing magnetic fields?
In its final moments of life, a distant massive star releases an intense burst of high-energy gamma radiation - a Gamma Ray Burst (GRB) - the brightest sources of energy in the universe, detectable to humans through powerful telescopes.
Not everything is ferromagnetic in high magnetic fields
High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field.
Ultracold gases in time-dependent magnetic fields
Zk Noor Nabi from Zhejiang University, China and co-workers from the Indian Institute of Technology studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of an ultracold gas in a time-dependent magnetic field.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.
Technique pulls interstellar magnetic fields within easy reach
A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.
A bubbly new way to detect the magnetic fields of nanometer-scale particles
The method provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.
Quantum sensing method measures minuscule magnetic fields
A new technique developed at MIT uses quantum sensors to enable precise measurements of magnetic fields in different directions.
The FASEB Journal: Magnetic fields enhance bone remodeling
Since the creation of 3D-printed (3DP) porous titanium scaffolds in 2016, the scientific community has been exploring ways to improve their ability to stimulate osteogenesis, or bone remodeling.
Tangled magnetic fields power cosmic particle accelerators
Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe.
More Magnetic Fields News and Magnetic Fields Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at