Nav: Home

Having one eye better than the other may explain ants' left bias

April 11, 2018

Unlike Derek Zoolander, ants don't have any difficulty turning left. New research from the University of Bristol has now found rock ants often have one eye slightly better than the other, which could help explain why most of them prefer to turn left, given the choice.

The research, published in Scientific Reports today [Wednesday 11 April] and led by Dr Edmund Hunt and Emeritus Professor Nigel Franks, studied whether rock ants' turning direction was associated with how well the ants can see in either eye. Previous research on honey bees found a link between lateralization to learn odours better with the right antenna, and more smell sensors on the right antenna than the left.

Behavioural lateralization is the preference to use a certain side of the body for certain tasks. For example, most humans are right-handed. While scientists used to think this was only a human trait, evidence for lateralization in animals, including insects like ants and bees, is becoming increasingly widespread. Research by Bristol in 2014 found that rock ants show a leftward turning bias in branching nest sites. While such lateralization may originate in asymmetrical brain structures, it may also relate to external shape asymmetries - such as the size of eyes or the length of legs.

Ant compound eyes are composed of small structures known as ommatidia which collect light. More ommatidia in an eye contributes to better vision. The researchers found that ants turning left tended to have slightly more ommatidia in their right eye, and vice versa. This may be because they prefer to walk with their inferior eye pointing toward the wall, so when they come to a branch they follow the wall along to the left. This is the first study to report a link between asymmetries in compound eyes and behavioural lateralization in insects.

Dr Edmund Hunt, EPSRC Doctoral Prize Fellow in the Department of Engineering Mathematics' Collective Dynamics research group and corresponding author, said: "It is intriguing that lateralization of behaviour seems to be associated with observable external asymmetries in the body. This suggests that behavioural lateralization is something that is 'hardwired' into these animals as they develop rather than something learned through experience. It also shows that physical indicators of lateralization can be externally observable rather than hidden in the brain - and might be awaiting discovery in all sorts of animals."

Theoretical models of behavioural lateralization suggest that population or colony-level alignment of behavioural biases should develop in social species that would benefit from coordinating their behaviour. In this case, more predictable behaviour would help them cooperate. On the other hand, the costs of being more predictable, such as vulnerability to predators, might outweigh this alignment of lateralization in non-social species.

The researchers suggest a comparative study should be carried out on compound eye asymmetry between social and non-social species of insects of the same family, such as honeybees vs. solitary bees, to see if it is more pronounced in social species.
-end-
Paper:

'Asymmetric ommatidia count and behavioural lateralization in the ant Temnothorax albipennis' by Edmund R. Hunt, Ciara Dornan, Ana B. Sendova-Franks & Nigel R. Franks in Scientific Reports [open access]

University of Bristol

Related Bees Articles:

To buzz or to scrabble? To foraging bees, that's the question
A team of UA biologists has discovered that for a hard-working bumblebee, foraging for pollen versus nectar is very different -- and tougher than you might think.
Nicotine enhances bees' activity
Nicotine-laced nectar can speed up a bumblebee's ability to learn flower colors, according to scientists at Queen Mary University of London (QMUL).
Scientists say agriculture is good for honey bees
Scientists with the University of Tennessee Institute of Agriculture evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honey bee health.
Honey bees have sharper eyesight than we thought
Research conducted at the University of Adelaide has discovered that bees have much better vision than was previously known, offering new insights into the lives of honey bees, and new opportunities for translating this knowledge into fields such as robot vision.
Overuse of antibiotics brings risks for bees -- and for us
Researchers from The University of Texas at Austin have found that honeybees treated with a common antibiotic were half as likely to survive the week after treatment compared with a group of untreated bees, a finding that may have health implications for bees and people alike.
Flies and bees act like plant cultivators
Pollinator insects accelerate plant evolution, but a plant changes in different ways depending on the pollinator.
Bees can learn to use a tool by observing others
Simply by watching other bees, bumblebees can learn to use a novel tool to obtain a reward, a new study reveals.
Stingless bees have their nests protected by soldiers
Attacks by robber bees result in the evolution of larger guard bees and thus promote the division of labor in the hive.
Save the bees? There's an app for that
A new mobile app can calculate the crop productivity and pollination benefits of supporting endangered bees.
Sweat bees on hot chillies: Native bees thrive in traditional farming, securing good yield
Farming doesn't always have to be harmful to bees: Even though farmers on the Mexican peninsula of Yucatan traditionally slash-and-burn forest to create small fields, this practice can be beneficial to sweat bees by creating attractive habitats.

Related Bees Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...