Nav: Home

Baby fish led astray by high CO2 in oceans

April 11, 2018

Baby fish will find it harder to reach secure shelters in future acidified oceans -- putting fish populations at risk, new research from the University of Adelaide has concluded.

Published today in the Nature journal Scientific Reports, the researchers described how barramundi larvae in high CO2 conditions, predicted for the turn of the century, turn away from the ocean noises they would normally be attracted to. They are instead attracted to other sounds -- noises produced by the wrong sort of habitats and or 'white noise'.

"The oceans are far from silent environments; they harbor many noisy animals, for example snapping shrimps and whales and dolphins," says project leader Professor Ivan Nagelkerken, from the University of Adelaide's Environment Institute.

"Oceanic larvae (hatchlings or baby fish) from quite a few species of fishes and invertebrates listen to sounds of coastal ecosystems. They use these sounds to guide them from the open ocean, where they hatch, to a sheltered home in shallow waters, where they can spend their juvenile and adult lives.

"Unfortunately the CO2 that humans are pumping into the atmosphere by burning fossil fuels gets absorbed by the ocean and causes acidification, and this causes changes to the behaviour of many marine animals."

The research, carried out by then PhD candidate Tullio Rossi, compared the activity of barramundi larvae in marine tanks with levels of CO2 that are predicted for the turn of the century against the responses of barramundi larvae in current day CO2 levels.

"In our study we found that while larvae of barramundi are attracted to the sounds of tropical estuaries, larvae raised under future ocean conditions with elevated CO2 were deterred by these natural sounds," says Professor Nagelkerken. "Moreover, under elevated CO2, larval barramundi were attracted to the wrong sounds." The other sounds were noises found on cold water reefs (which are not the correct habitat for barramundi) and artificial sounds or 'white noise'.

Professor Sean Connell, from the University's Southern Seas Ecology Laboratories, says that if ocean acidification causes larvae to be deterred to the sounds of their habitats, and attracts them to irrelevant sounds, they could end up in the wrong habitat or in places where they cannot survive.

"Fewer larvae are arriving in coastal ecosystems, estuaries and rivers could result in smaller population sizes and, in the case of commercial species like barramundi, this could have a significant impact on fisheries, whether it be commercial or recreational," Professor Connell says.

"The research also raises questions about future fish populations in areas with unnatural sounds. Will some species be more attracted, for example, to areas where there are a lot of human structures and sounds in and under the water, such as harbours and oil platforms, in the future?"
-end-
Media Contact:

Professor Ivan Nagelkerken
Environment Institute
The University of Adelaide
Phone: +61-8-8313-4137
Mobile: +61-0-477-320-551
ivan.nagelkerken@adelaide.edu.au

Robyn Mills
Media Officer
University of Adelaide
Phone: +61-0-8-8313-6341
Mobile: +61-0-410-689-084
robyn.mills@adelaide.edu.au

University of Adelaide

Related Ocean Acidification Articles:

Ocean acidification could impair the nitrogen-fixing ability of marine bacteria
While increased carbon dioxide levels theoretically boost the productivity of nitrogen-fixing bacteria in the world's oceans, because of its 'fertilizing' effect, a new study reveals how increasingly acidic seawater featuring higher levels of this gas can overwhelm these benefits, hampering the essential service these bacteria provide for marine life.
International team reports ocean acidification spreading rapidly in Arctic Ocean
Ocean acidification (OA) is spreading rapidly in the western Arctic Ocean in both area and depth, according to new interdisciplinary research reported in Nature Climate Change by a team of international collaborators, including University of Delaware professor Wei-Jun Cai.
Unexpected result: Ocean acidification can also promote shell formation
Fact: more carbon dioxide (CO2) in the air also acidifies the oceans.
Ocean acidification to hit West Coast Dungeness crab fishery, new assessment shows
The acidification of the ocean expected as seawater absorbs increasing amounts of carbon dioxide from the atmosphere will reverberate through the West Coast's marine food web, but not necessarily in the ways you might expect, new research shows.
Landmark global scale study reveals potential future impact of ocean acidification
Ocean acidification and the extent to which marine species are able to deal with low pH levels in the Earth's seas, could have a significant influence on shifting the distribution of marine animals in response to climate warming.
Ocean acidification study offers warnings for marine life, habitats
Acidification of the world's oceans could drive a cascading loss of biodiversity in marine habitats, according to research published today in Nature Climate Change.
New study shows ocean acidification accelerates erosion of coral reefs
Scientists studying naturally high carbon dioxide coral reefs in Papua New Guinea found that erosion of essential habitat is accelerated in these highly acidified waters, even as coral growth continues to slow.
Study finds increased ocean acidification due to human activities
Oceanographers from MIT and Woods Hole Oceanographic Institution report that the northeast Pacific Ocean has absorbed an increasing amount of anthropogenic carbon dioxide over the last decade, at a rate that mirrors the increase of carbon dioxide emissions pumped into the atmosphere.
Ocean acidification threatens cod recruitment in the Atlantic
Increasing ocean acidification could double the mortality of newly hatched cod larvae.
First evidence of ocean acidification's impact on reproductive behavior in wild fish
Ocean acidification could have a dramatic impact on the reproductive behaviour of fish, a new international study shows.

Related Ocean Acidification Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...