Sensing interactions between molecules

April 11, 2018

In a recent study published in the scientific journal Nature Nanotechnology, physicists and chemists of the University of Münster (Germany) describe an experimental approach to visualising structures of organic molecules with exceptional resolution. The key to this newly developed microscopic method is the high stability of a particularly sharp and atomically defined probe tip.

The new method which can be used to image the structural and chemical properties of organic molecules with extreme precision was developed by physics researchers in the labs of the Center for Nanotechnology (CeNTech) at the University of Münster. The experiment is based on atomic force microscopy where sample surfaces are scanned with the apex of a needle-like probe. As the lead author of the study Dr. Harry Mönig explains: "Our special technique involves a copper-based probe tip which is passivated by a single oxygen atom at the tip termination." Here, passivation means that the oxygen atom reduces undesired interaction between the atoms of the tip and the atoms in the molecules under investigation. This greatly increases the imaging resolution. In contrast to previous methods, the bond between the oxygen atom at the tip and copper base is particularly strong, thereby reducing imaging artefacts to a minimum.

Prof. Dr. Harald Fuchs, co-author of the study, emphasises: "The potential of the new method is considerable as it allows us to investigate bonding structures of molecular networks with exceptional accuracy." Providing fundamental insights into the interactions between molecules is important for the development of new so-called nanostructured materials. Such materials take advantage of the fact that very small deviations on the nanoscale can significantly alter the material properties. The difference between diamonds and graphite is a well-known example of such nanoscale deviations. Although both consist of pure carbon, diamond is extremely hard whereas graphite is comparatively soft. Only the structural arrangement and bonding between the carbon atoms are different.
This work was supported by the German Research Foundation (DFG).

Original publication:

Harry Mönig, Saeed Amirjalayer, Alexander Timmer, Zhixin Hu, Lacheng Liu, Oscar Díaz Arado, Marvin Cnudde, Cristian Alejandro Strassert, Wei Ji, Michael Rohlfing and Harald Fuchs (2018): Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nature Nanotechnology Advance Online Publication, DOI: 10.1038/s41565-018-0104-4

University of Münster

Related Nanotechnology Articles from Brightsurf:

Hiring antibodies as nanotechnology builders
Researchers at the University of Rome Tor Vergata recruit antibodies as molecular builders to assemble nanoscale structures made of synthetic DNA.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Want in on nanotechnology? Capitalize on collaborative environments
Patent law experts demonstrate that private-public partnerships lead to promising innovation output measured in patents.

Nanotechnology makes it possible for mice to see in infrared
Mice with vision enhanced by nanotechnology were able to see infrared light as well as visible light, reports a study published Feb.

Healing kidneys with nanotechnology
In new research appearing in the journal Nature Biomedical Engineering, Hao Yan and his colleagues at the University of Wisconsin-Madison and in China describe a new method for treating and preventing Acute Kidney Injury.

A treasure trove for nanotechnology experts
A team from EPFL and NCCR Marvel has identified more than 1,000 materials with a particularly interesting 2-D structure.

Nanotechnology could redefine oral surgery
A trip to the dentist or orthodontist usually instills a sense of dread in most patients, and that's before the exam even begins.

MEDLINE indexes Pharmaceutical Nanotechnology
Pharmaceutical Nanotechnology, an important journal published by Benthm Science, is accepted to be included in MEDLINE.

Nanotechnology and nanopore sequencing
DNA is the hereditary material in our cells and contains the instructions for them to live, behave, grow, and develop.

Nanotechnology: Lighting up ultrathin films
Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet in Munich have developed a method for rapid and efficient characterization of these materials.

Read More: Nanotechnology News and Nanotechnology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to