Swansea scientists discover greener way of making plastics

April 11, 2018

Researchers at the Energy Safety Research Institute (ESRI) at Swansea University have found a way of converting waste carbon dioxide into a molecule that forms the basis of making plastics. The potential of using global ethylene derived from carbon dioxide (CO2) is huge, utilising half a billion tonnes of the carbon emitted each year and offsetting global carbon emissions.

Dr Enrico Andreoli heads the CO2 utilisation group at ESRI. He said: "carbon dioxide is responsible for much of the damage caused to our environment. Considerable research focuses on capturing and storing harmful carbon dioxide emissions. But an alternative to expensive long-term storage is to use the captured CO2 as a resource to make useful materials.

That's why at Swansea we have converted waste carbon dioxide into a molecule called ethylene. Ethylene is one of the most widely used molecules in the chemical industry and is the starting material in the manufacture of detergents, synthetic lubricants, and the vast majority of plastics like polyethylene, polystyrene, and polyvinyl chloride essential to modern society."

Dr Andreoli said: "Currently, ethylene is produced at a very high temperature by steam from oils cracking. We need to find alternative ways of producing it before we run out of oil."

The CO2 utilisation group uses CO2, water and green electricity to generate a sustainable ethylene at room temperature. Central to this process is a new catalyst - a material engineered to speed up the formation of ethylene. Dr Andreoli explained: "We have demonstrated that copper and a polyamide additive can be combined to make an excellent catalyst for CO2 utilisation. The polyamide doubles the efficiency of ethylene formation achieving one of the highest rates of conversion ever recorded in standard bicarbonate water solutions."

The CO2 utilisation group worked in collaboration with the University of Nebraska-Lincoln and the European Synchrotron Research Facility in Grenoble in the formation of the catalyst.

Dr Andreoli concluded: "The potential of using CO2 for making everyday materials is huge, and would certainly benefit large-scale producers. We are now actively looking for industrial partners interested in helping take this globally-relevant, 21st century technology forward."
-end-
The research has been published in the American Chemical Society journal ACS Catalysis.

ESRI researcher Dr Sunyhik Ahn is lead author of the paper. Co-authors are ESRI researchers Dr Russell Wakeham, Dr Jennifer Rudd, Dr Shirin Alexander; graduate student Aled R. Lewis at Swansea University, Wales; Dr Konstantin Klyukin and Prof Vitaly Alexandrov of the Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, USA; and Dr Francesco Carla scientist at the European Synchrotron Radiation Facility, Grenoble, France.

This research was supported by the UK Engineering and Physical Sciences Research Council (EPSRC), with additional funding from the Welsh Government through the Sêr Cymru programme, the Welsh European Funding Office (WEFO) through the FLEXIS research operation, the European Synchrotron Radiation Facility, and the U.S. Department of Energy.

Notes

Read the abstract at https://pubs.acs.org/doi/10.1021/acscatal.7b04347

This news release can be found online at http://www.swansea.ac.uk/som/newsarticles/

Related materials:

ESRI: http://www.esri-swansea.org/

Swansea University: http://www.swansea.ac.uk/

The Energy Safety Research Institute is positioned to discover and implement new technology for a sustainable, affordable, and secure energy future and is housed on Swansea University's new world class Bay Campus. ESRI provides an exceptional environment for delivering cutting edge research across energy and energy safety-related disciplines with a focus on renewable energy, hydrogen, carbon capture and utilization, as well as new oil and gas technologies.

Follow us on Twitter @ESRI_Swansea

Swansea University

Related Plastics Articles from Brightsurf:

Bioplastics no safer than other plastics
Bioplastics contain substances that are as toxic as those in ordinary plastics.

A first-of-its-kind catalyst mimics natural processes to break down plastics
A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.

The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.

Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.

Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.

Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.

Read More: Plastics News and Plastics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.