Most primitive kangaroo ancestor rediscovered after 30 years in obscurity

April 11, 2018

A handful of tiny teeth have led scientists to identify the most distant ancestor of today's kangaroos. The fossils were found in the desert heart of Australia, and then hidden away, and almost forgotten in a museum collection for over three decades. The findings are published in the Journal of Vertebrate Paleontology.

Kangaroos are icons of Australia's unique living fauna. However, their earliest ancestry is shrouded in mystery. At the beginning of the 1980's, a few enigmatic molar teeth were excavated by palaeontologists hunting for fossils around a dry salt lake in northern South Australia. The rare specimens were recognised as an ancient kangaroo ancestor, but had to wait for over 30 years before modern computer-based analyses could confirm the significance of the discovery.

Originally dubbed Palaeopotorous priscus, Latin for '[very] ancient', 'ancient rat-kangaroo', by the now eminent Australian palaeontologists Prof. Tim Flannery (University of Melbourne) and Dr Tom Rich (Museums Victoria), the importance of these remains was suggested in their first unveiling to science.

"The teeth of Palaeopotorous were initially described in 1986. Even then they were stated as representing possibly the most primitive relative of the entire modern kangaroo radiation. Yet, nobody ever evaluated this claim, and despite being occasionally mentioned in the scientific literature, they were never again examined in detail," said Dr Wendy den Boer, who studied the fossils as part of her recently awarded PhD from Uppsala University in Sweden.

"The name Palaeopotorous was established using a single molar tooth, although, eleven other anatomically very similar teeth were recovered during the expedition. None of these fossils were found in association, so it is still unclear whether we are dealing with one, or more species," said Dr Benjamin Kear, Dr den Boer's PhD supervisor and co-author on the published article. "This uncertainly means that we have had to use a complex series of analyses to assess its morphological similarity and evolutionary relationships relative to other members of the kangaroo family tree".

"Our results showed that Palaeopotorous was most similar to living rat-kangaroos, as well as some other extinct kangaroo relatives. Using information from fossils, and the DNA of living species, we were able to further determine that at around 24 million years old, Palaeopotorous is not just primitive, but likely represents the most distant forerunner of all known kangaroos, rat-kangaroos and their more ancient ancestors," said Dr den Boer.

"Palaeopotorous was about the size of a small rabbit, and probably did not hop, but would have bounded on all four legs. Nevertheless, a few bones found at the same site in central Australia indicate that the earliest kangaroos already possessed some key adaptations for hopping gaits," said Dr Kear.

Palaeopotorous lived at a time when central Australia was much wetter than it is today. Its fossils were buried in clay deposits left by a river, but these earliest kangaroo ancestors would have foraged amongst vegetation growing nearby and along the banks. The teeth of Palaeopotorous were washed into the river after death, along with the remains of many other ancient marsupials.?
-end-


Uppsala University

Related Fossils Articles from Brightsurf:

First exhaustive review of fossils recovered from Iberian archaeological sites
The Iberian Peninsula has one of the richest paleontological records in Western Europe.

Fossils reveal mammals mingled in age of dinosaurs
A cluster of ancient mammal fossils discovered in western Montana reveal that mammals were social earlier than previously believed, a new study finds.

Oldest monkey fossils outside of Africa found
Three fossils found in a lignite mine in southeastern Yunan Province, China, are about 6.4 million years old, indicate monkeys existed in Asia at the same time as apes, and are probably the ancestors of some of the modern monkeys in the area, according to an international team of researchers.

Scientists prove bird ovary tissue can be preserved in fossils
A research team led by Dr. Alida Bailleul from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences has proved that remnants of bird ovaries can be preserved in the fossil record.

Biosignatures may reveal a wealth of new data locked inside old fossils
Step aside, skeletons -- a new world of biochemical ''signatures'' found in all kinds of ancient fossils is revealing itself to paleontologists, providing a new avenue for insights into major evolutionary questions.

Fish fossils become buried treasure
Rare metals crucial to green industries turn out to have a surprising origin.

New Argentine fossils uncover history of celebrated conifer group
Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.

Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.

Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.

Read More: Fossils News and Fossils Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.