Nav: Home

Prototype of most advanced quantum memory presented by two Kazan universities

April 11, 2018

Employees of Kazan Federal University and Kazan Quantum Center of Kazan National Research Technical University demonstrated an original layout of a prototype of multiresonator broadband quantum memory-interface.

Professor Sergey Moiseev, Director of Kazan Quantum Center, explains, "The scheme of multiresonator microwave quantum memory allowed for reaching 16.3% of quantum efficiency at room temperature, which was significantly better than other recent results in the world for microwave quantum memory in electronic ensembles at helium temperatures. We also showed that quantum efficiency of such memory can be over 99% at sufficiently low temperatures used in quantum computer schemes on superconducting qubits."

This work of Kazan physicists can help create universal memory solutions for quantum computers on superconducting qubits, which is one of the most important tasks in this field today.

Quantum computer, unlike the ones we are used to, operates in qubits which can simultaneously contain logical 0 and 1 due to quantum mechanics effects and laws of quantum physics. Quantum computer with a sufficient number of operational qubits can tackle objectives for which usual binary logic computers need hundreds of years.

In March 2018, a computing system of two superconducting qubits was created in Russia; it can further become the basis for quantum computers and data encryption systems. In the labs headed by Mikhail Lukin (Harvard University) and John Martinis (Google), first prototypes of 500-qubit computers have been assembled. In the nearest future, they are expected to showcase advantages that quantum computing has over classic binary computing.

Co-author of the paper at KFU Oleg Sherstyukov adds, "The main achievements of these past years in quantum computing on superconducting qubits have not only been linked with the increase in the number of interacting qubits but also with a significant lengthening of a superconducting qubit's lifetime - to 100 microseconds. However, it's impossible to increase this time further because of fundamental laws of physics. In that regard, the problem of creating multi-qubit microwave quantum memory with a prolonged lifetime has become very pertinent."

Russian and overseas scientists have been working on this topic for several years now. Professor Moiseev adds that the most promising achievements have been based on the scheme of photon echo on an ensemble of atoms, the one that was proposed and explained by Kazanites. In 2010, employees of Kazan Quantum Center proved that photon echo quantum memory can be created in an optical resonator, which paved the way to multi-qubit integral schemes of quantum memory and its inaugural implementation in microwave frequencies.

Kazan Federal University

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...