Nav: Home

An immunological memory in the brain

April 11, 2018

Inflammatory reactions can change the brain's immune cells in the long term - meaning that these cells have an 'immunological memory'. This memory may influence the progression of neurolog-ical disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases. Scientists at the German Center for Neurodegenerative Diseases (DZNE), the Hertie Institute for Clinical Brain Research (HIH), and the University of Tuebingen report on this in the journal Nature. Their study is the result of a collaborative effort also involving re-searchers from Goettingen, Bonn, and Freiburg.

Microglia are immune cells that only occur in the brain. They protect the brain by cleansing it of intruders and toxic substances. However, in cer-tain situations they can also cause damage. Therefore, they have long been suspected of playing a central role in neurodegenerative diseases.

As microglia are very long-lived, the scientists were keen to find out whether environmental factors change these immune cells over time and what effect this can have on brain health. "Epidemiological studies have shown that infectious diseases and inflammation suffered during a life-time can affect the severity of Alzheimer's disease much later in life. We therefore asked ourselves whether an immunological memory in these long-lived microglia could be communicating this risk," explains Dr. Jonas Neher, head of the current study and a scientist at the DZNE and the HIH.

Stimulated immune reaction

In order to address this question, Neher and colleagues triggered in-flammation in mice, outside their brains; it was already known that such an inflammation can stimulate an immune reaction in the brain. Howev-er, it was not clear whether microglia might be able to remember a pre-vious inflammation. As it turned out: Depending on how often the scien-tists repeated this process, they were able to induce two different states in the microglia: "training" and "tolerance". The first inflammatory stimu-lus trained the microglia, causing them to react more strongly to the se-cond. However, after a fourth stimulus, tolerance had occurred and the microglia barely responded.

Next, the researchers investigated how microglia training and tolerance affected the formation of amyloid plaques in the long term. Such "plaques" are characteristic toxic deposits that accumulate in the brains of patients with Alzheimer's disease. In a mouse model of Alzheimer's pathology, the scientists observed that trained microglia amplified the formation of plaques even months after their immunological memory had been triggered, thus causing the disease to become more severe. In contrast, tolerant microglia reduced plaque load. The scientists also no-ticed similar effects in a mouse model of stroke.

Changes in DNA

In order to understand these effects more precisely, Neher and cowork-ers investigated epigenetic changes in the microglia, i.e. chemical modi-fications to the DNA or its packaging proteins that cause certain genes to become more or less active. As epigenetic modifications are very stable, the researchers saw in them a possible cause for the long-term behavioral changes exhibited by the microglia. This hypothesis turned out to be correct: even many months after the initial immune stimulus, both the trained and the tolerant microglia showed specific epigenetic changes and corresponding differences in gene activation. This molecular reprogramming changed important functions in the microglia, such as their ability to remove amyloid plaques. And this affected Alzheimer's pathol-ogy.

Consequences for neurodegenerative diseases?

"It is possible that also in humans, inflammatory diseases that primarily develop outside the brain could trigger epigenetic reprogramming inside the brain," says Neher. Both infections and diseases such as diabetes or arthritis are associated with inflammatory reactions and are known risk factors for Alzheimer's disease. The brain's immunological memory - epigenetically modified microglia - is one possible explanation for this effect. Therefore, Neher and colleagues are now investigating the condi-tions under which microglia undergo epigenetic changes in humans and looking at the therapeutic possibilities that may arise from this.
-end-
Original publication

Wendeln, Degenhardt et al. (2018): "Innate immune memory in the brain shapes neurological disease hallmarks", Nature; doi: 10.1038/s41586-018-0023-4.

DZNE - German Center for Neurodegenerative Diseases

Related Memory Articles:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.
Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.
Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.
Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.