Nav: Home

'Everything-repellent' coating could kidproof phones, homes

April 11, 2018

ANN ARBOR--In an advance that could grime-proof phone screens, countertops, camera lenses and countless other everyday items, a materials science researcher at the University of Michigan has demonstrated a smooth, durable, clear coating that swiftly sheds water, oils, alcohols and, yes, peanut butter.

Called "omniphobic" in materials science parlance, the new coating repels just about every known liquid. It's the latest in a series of breakthrough coatings from the lab of Anish Tuteja, U-M associate professor of materials science and engineering. The team's earlier efforts produced durable coatings that repelled ice and water, and a more fragile omniphobic coating. The new omniphobic coating is the first that's durable and clear. Easily applied to virtually any surface, it's detailed in a paper published in ACS Applied Materials & Interfaces.

Tuteja envisions the new coating as a way to prevent surfaces from getting grimy, both in home and industry. It could work on computer displays, tables, floors and walls, for example.

"I have a 2-year-old at home, so for me, this particular project was about more than just the science," Tuteja said. "We're excited about what this could do to make homes and daycares cleaner places, and we're looking at a variety of possible applications in industry as well."

He says the new coating is the latest result of the team's systematic approach, which breaks with the traditional materials science "mix-and-see" approach. By mapping out the fundamental properties of a vast library of substances, they're able to mathematically predict how any two will behave when they're combined. This enables them to concoct a nearly endless variety of combinations with very specifically tailored properties.

"In the past, researchers might have taken a very durable substance and a very repellent substance and mixed them together," Tuteja said. "But this doesn't necessarily yield a durable, repellent coating."

They discovered that even more important than durability or repellency is a property called "partial miscibility," or the ability of two substances to mix together in exactly the right way. Chemicals that play well together make a much more durable product, even if they're less durable individually.

Tweaking the miscibility of this particular coating posed a special challenge. To make a versatile coating that's optically clear and smooth enough to repel oils and alcohols, the team needed to find a repellent ingredient and a binder with exactly the right amount of miscibility, as well as the ability to stick to a wide variety of substrates. They also needed a coating that would stay smooth during processing and drying.

"You can repel water with a rough surface that creates tiny pockets of air between the water and the surface, but those surfaces don't always repel oils or alcohols because of their lower surface tension," Tuteja said. "We needed a very smooth surface that interacts as little as possible with a variety of liquids, and we also needed ingredients that mix together very well, because too much phase separation between ingredients will scatter light."

Ultimately, the team discovered that a mix of fluorinated polyurethane and a specialized fluid-repellent molecule called F-POSS would do the job. Their recipe forms a mixture that can be sprayed, brushed, dipped or spin-coated onto a wide variety of surfaces, where it binds tightly. While the surface can be scratched by a sharp object, it's durable in everyday use. And its extremely precise level of phase separation makes it optically clear.

"The repellent and binder mix together well enough to make a clear coating, but there's a very small amount of phase separation between them," said Mathew Boban, a materials science and engineering graduate researcher and an author on the paper. "That separation allows the F-POSS to sort of float to the surface and create a nice repellent layer."

Tuteja believes that the coating will be inexpensive by the time it sees the mass market--fluorinated polyurethane is an inexpensive, common ingredient. And while F-POSS is rare and expensive today, manufacturers are in the process of scaling it up to mass production, which should dramatically lower its cost.

The research team is also doing further studies to ensure that the coating is nontoxic for use in places like daycare centers. Tuteja estimates that the coating could go to market within the next two years, and he believes childproof coatings are just the beginning.

The coating could also be used in refrigeration, power generation and oil refining--all industries that depend on the condensation of liquids. The new coating could enable equipment to slough off condensed water and chemicals more quickly, increasing efficiency by up to 20 percent. That's a game changer, as those industries are some of the world's most high-volume and energy-intensive.
-end-
The paper is titled "Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces." Support for the research was provided by the Air Force Office of Scientific Research, Office of Naval Research and National Science Foundation. U-M and the U.S. Air Force have jointly filed patent applications related to the technology.

University of Michigan

Related Water Articles:

Water, water, nowhere
Researchers at the University of Pittsburgh's Swanson School of Engineering have found that the unusual properties of graphane -- a two-dimensional polymer of carbon and hydrogen -- could form a type of anhydrous 'bucket brigade' that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems.
Advantage: Water
When water comes in for a landing on the common catalyst titanium oxide, it splits into hydroxyls just under half the time.
What's really in the water
Through a five-year, $500,000 CAREEER Award from the National Science Foundation, a civil and environmental engineering research group at the University of Pittsburgh's Swanson School of Engineering will be developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health.
Jumping water striders know how to avoid breaking of the water surface
When escaping from attacking predators, different water strider species adjust their jump performance to their mass and morphology in order to jump off the water as fast and soon as possible without breaking of the water surface.
Water, water -- the two types of liquid water
There are two types of liquid water, according to research carried out by an international scientific collaboration.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
UM researchers found shallow-water corals are not related to their deep-water counterparts
A new study led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science found that shallow-reef corals are more closely related to their shallow-water counterparts over a thousand miles away than they are to deep-water corals on the same reef.
Saline water better than soap and water for cleaning wounds, researchers find
Researchers found that very low water pressure was an acceptable, low-cost alternative for washing out open fractures, and that the reoperation rate was higher in the group that used soap.
UTA research predicting lake levels, moving water to yield better data for water providers
A University of Texas at Arlington environmental engineer is creating an integrated decision support tool for optimal operation of water supply systems that will allow water providers to make better decisions about when to turn on pumps to transfer water from one reservoir system to another and when to release water downstream from the reservoirs.
Surfing water molecules could hold the key to fast and controllable water transport
Scientists at UCL have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.

Related Water Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...