Nav: Home

Road salt pollutes drinking water wells in suburban New York state

April 11, 2018

(Millbrook, NY) Road salt applied during the winter lingers in the environment, where it can pollute drinking water supplies. In a recent study in the Journal of Environmental Quality, researchers identify landscape and geological characteristics linked to elevated well water salinity in a suburban township in Southeastern New York.

Victoria Kelly, lead author and Environmental Monitoring Program Manager at the Cary Institute of Ecosystem Studies, explains, "Each year, millions of metric tons of road salt are applied to roads in the US. Some of this salt seeps into the soil, where it accumulates and contaminates groundwater. We wanted to understand why some wells were more at risk than others, to inform management that protects water quality."

Kelly and colleagues analyzed publicly available data on water samples taken from 956 private drinking water wells in East Fishkill, New York between 2007 and 2013. More than half of the wells sampled exceeded US Environmental Protection Agency health standards for sodium. Distance to the nearest road and amount of nearby pavement strongly influenced well water salinity. Surprisingly, well depth and road type -- ranging from interstate highways to back roads -- did not have a significant impact.

GIS analysis of sodium and chloride concentrations was used to describe the pattern of road salt distribution in the aquifers tapped for drinking water, and to compare surface features in the surrounding area of each well location. The team assessed neighborhood-scale variables, including well depth, proximity to roads, well elevation relative to nearby roads, impervious surface, surface geology, and soil type to discern relationships between development and well salinity.

Findings linking pavement and other impervious surface cover to well salinity support a growing body of evidence that development and urbanization cause groundwater salinization. Proximity to a road increased a well's chloride concentration, yet road type - major or minor - did not have an impact. Well depth did not significantly impact saltiness and elevation in relation to nearby roads only affected wells when the roads were more than 30 meters from the nearest well.

Several hotspots, where salinization was especially high, were identified. Suggested contributing factors included sharp turns and steep grades that required heavier road salt application, and narrow streets that only accommodate older, less efficient salt trucks. There was only one cold spot, in an area of low housing density, reinforcing the relationship between urbanization, salt application, and freshwater salinization.

"Understanding the landscape features that lead to increased groundwater salinization can inform targeted salt application," explains Stuart Findlay, a freshwater ecologist at the Cary Institute of Ecosystem Studies. "The time to act is now, as we know it can take decades or more for the salt currently in groundwater to flush out."

Kelly adds, "In planning efforts to minimize road salt impacts, our findings tell us that smaller roads should not be overlooked and areas with a lot of pavement and porous, well-drained soils are most at risk of experiencing salinization. Road salting is not one-size-fits-all undertaking. More targeted approaches will keep roads safe while reducing unintended consequences to drinking water supplies."
-end-
Investigators

Victoria R. Kelly - Cary Institute of Ecosystem Studies
Mary Ann Cunningham - Department of Earth Science and Geography, Vassar College
Neil Curri - Department of Earth Science and Geography, Vassar College
Stuart E. Findlay - Cary Institute of Ecosystem Studies
Sean M. Carroll - Cornell Cooperative Extension of Dutchess County

The Cary Institute of Ecosystem Studies is one of the world's leading independent environmental research organizations. Areas of expertise include disease ecology, forest and freshwater health, climate change, urban ecology, and invasive species. Since 1983, Cary Institute scientists have produced the unbiased research needed to inform effective management and policy decisions.

Cary Institute of Ecosystem Studies

Related Drinking Water Articles:

Research targets PFOA threat to drinking water
A highly toxic water pollutant, known as perfluorooctanoic acid (PFOA), last year caused a number of US communities to close their drinking water supplies.
Neonicotinoids detected in drinking water in agricultural area
Concern over the use of neonicotinoid pesticides is growing as studies find them in rivers and streams, and link them with declining bee populations and health effects in other animals.
Graphene sieve turns seawater into drinking water
Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies.
Glowing crystals can detect, cleanse contaminated drinking water
Motivated by public hazards associated with contaminated sources of drinking water, a team of scientists has successfully developed and tested tiny, glowing crystals that can detect and trap heavy-metal toxins like mercury and lead.
Study: Conservation preferred way to protect drinking water
A new study from the University of Delaware found when given the choice, people prefer to invest their money in conservation, such as protecting key areas of a watershed -- also referred to as green infrastructure -- than traditional water treatment plants -- also referred to as gray infrastructure.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
Is fluoride in drinking water safe? (video)
It's in our tap water, toothpaste and even in tea.
Drinking more water associated with numerous dietary benefits, study finds
University of Illinois professor Ruopeng An led a study that examined the dietary habits of more than 18,300 US adults, and found the majority of people who increased their consumption of plain water by 1 percent reduced their total daily calorie intake as well as their consumption of saturated fat, sugar, sodium and cholesterol.
Is disinfectant necessary for safe drinking water?
A difference has emerged between some Western European countries and the US regarding the use of residual disinfectants to offer safe drinking water.
Does living near an oil or natural gas well affect your drinking water?
Does living near an oil or natural gas well affect the quality of your drinking water?

Related Drinking Water Reading:

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...