Nav: Home

The changing chemistry of the Amazonian atmosphere

April 11, 2018

How do you measure a chemical compound that lasts for less than a second in the atmosphere?

That's the question atmospheric chemists have been trying to answer for decades. The compound: hydroxyl radicals -- also known as OH radicals. These oxidizing chemicals are vital to the atmosphere's delicate chemical balance, acting as natural air scrubbers to remove organic compounds and greenhouse gasses such as formaldehyde and methane from the atmosphere. But OH radicals also initiate reactions leading to secondary pollutants that affect human health and climate, such as organic particulate matter and ozone.

Researchers have been debating whether pollutants emitted from human activities, in particular nitrogen oxides (NOx), can affect levels of OH radicals in a pristine atmosphere, but quantifying that relationship has been difficult. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have quantified the effect of NOx pollution on OH radicals in the Amazon rainforest.

The research is published in Science Advances.

While a remote and seemingly sparsely populated rainforest might seem like a strange place to study the effects of human pollution, the Amazon is actually home to one of the fastest growing cities in the world: Manaus, Brazil. Manaus, with more than 2 million people, has seen a boom in a range of industries from petroleum refining and chemical manufacturing to mobile phone manufacturing, ship building and tourism.

That growth has led to substantial amounts of pollution released into the atmosphere and when it moves downwind and meets the pristine air from the rainforest, it creates a real-world laboratory for atmospheric chemists. That laboratory is the perfect spot to study the impact of pollution on OH concentrations, as it is easy to distinguish unpolluted regional air, from air that had passed over Manaus.

"Because we were able to contrast unpolluted air with polluted air, this research has given us a great opportunity to understand how pollution from human activity will affect the atmospheric chemistry, especially with continued urbanization of forested areas," said Yingjun Liu, a former graduate student at SEAS and first author of the paper.

The researchers measured levels of isoprene, a chemical compound naturally emitted by trees, as well as levels of major OH oxidation products of isoprene. As OH concentration increases, the ratio of oxidation products to isoprene increase in the atmosphere. The researchers were able to infer OH concentrations from the measured product-to-parent ratio, using a delicate model that took many confounding factors into account.

The researchers collected data in the rainforest region, about 70 km downwind of Manaus, during the wet and dry seasons of 2014. The researchers found that accompanying the increase of NOx concentration from urban pollution, daytime peak OH concentrations in the rainforest skyrocketed, increasing by at least 250 percent.

"Our research shows that the oxidation capacity over tropical forests is susceptible to anthropogenic NOx emissions," said Scot Martin, the Gordon McKay Professor of Environmental Science and Engineering and Professor of Earth and Planetary Sciences at SEAS and senior author of the paper. "In the future, if trends of deforestation and urbanization continue, these increased levels of OH concentrations in the Amazon atmosphere could lead to changes in atmospheric chemistry, cloud formation, and rainfall."
-end-
This research was co-authored by Roger Seco, Saewung Kim, Alex B. Guenther, Allen H. Goldstein, Frank N. Keutsch, Stephen R. Springston, Thomas B. Watson, Paulo Artaxo, Rodrigo A. F. Souza and Karena A. McKinney. It was supported in part by the Department of Energy, the National Science Foundation, the Amazonas State Research Foundation and the São Paulo State Research Foundation.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Pollution Articles:

A friendlier way to deal with nitrate pollution
Learning from nature, scientists from the Center for Sustainable Resource Science in Japan and the Korean Basic Science Institute (KBSI) have found a catalyst that efficiently transforms nitrate into nitrite -- an environmentally important reaction -- without requiring high temperature or acidity, and now have identified the mechanism that makes this efficiency possible.
The world faces an air pollution 'pandemic'
Air pollution is responsible for shortening people's lives worldwide on a scale far greater than wars and other forms of violence, parasitic and insect-born diseases such as malaria, HIV/AIDS and smoking, according to a study published in Cardiovascular Research.
Airborne pollution associated with more severe rhinitis symptoms
A team of scientists from the Barcelona Institute for Global Health (ISGlobal), a research institute supported by 'la Caixa,' has discovered that the nasal symptoms of rhinitis are more severe in people exposed to higher levels of outdoor air pollution.
Air pollution in childhood linked to schizophrenia
Children who grow up in areas with heavy air pollution have a higher risk of developing schizophrenia.
Air pollution can worsen bone health
A new study by the CHAI Project with over 3,700 people in India associates air pollution with a higher risk to develop osteoporosis.
Combatting air pollution with nature
Air pollution is composed of particles and gases that can have negative impacts on both the environment and human health.
Nature might be better than tech at reducing air pollution
Adding plants and trees to the landscapes near factories and other pollution sources could reduce air pollution by an average of 27 percent, new research suggests.
Aspirin may prevent air pollution harms
A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function.
Is pollution linked to psychiatric disorders?
Researchers are increasingly studying the effects of environmental insults on psychiatric and neurological conditions, motivated by emerging evidence from environmental events like the record-breaking smog that choked New Delhi two years ago.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
More Pollution News and Pollution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.