How life generates new forms

April 11, 2018

When organisms change during the course of evolution, often what drives new forms is not genes themselves, but gene regulation -- what turns genes on and off. A new study identifies the kind of gene regulation most likely to generate evolutionary change.

Most modern organisms store genetic information in DNA and transcribe the information from DNA into RNA. Protein "transcription factors" that inhibit or enhance transcription of genes in the DNA are said to regulate gene expression.

In a March paper in PNAS, a team in Switzerland at ETH Zürich and the University of Zürich demonstrated that gene regulation by protein transcription factors more readily powers evolutionary change than another form of gene regulation that works at the RNA level.

"That really surprised us," said senior author Andreas Wagner, an external professor at the Santa Fe Institute and chairman of the Institute of Evolutionary Biology and Environmental Studies at the University of Zürich. "It's not self-evident. It's one of those things you just don't know before you look."

"New forms of regulation are crucial for a lot of new features of life," said Wagner. "What distinguishes the body plan of humans from that of sea urchins or fruit flies is new kinds of regulation -- turning the right genes on and off at the right time."

Previous work by the same team showed that transcription factors show high levels of two key evolutionary traits -- robustness and evolvability. A robust system functions relatively normally even when mutations occur. In contrast, an evolvable system is able to generate new forms or traits in response to new mutations.

Added lead author Joshua Payne (ETH Zurich, Swiss Institute of Bioinformatics): "We find that transcription factor binding sites are highly evolvable because mutations often create binding sites for other transcription factors. In this way, mutations to transcription factor binding sites can readily bring forth phenotypic variation."

The evolvability of transcriptional regulation may help explain why organisms switched from using RNA to store information some 4 billion years ago, to using DNA and proteins, Wagner said.
-end-


Santa Fe Institute

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.