3-D printed active metamaterials for sound and vibration control

April 11, 2018

Researchers have been pushing the capabilities of materials by carefully designing precise structures that exhibit abnormal properties that can control acoustic or optical waves. However, these metamaterials are constructed in fixed geometries, meaning their unique abilities are always fixed. Now, new 3-D printed metamaterial developed by a team led by University of Southern California researchers can be remotely switched between active control and passive states.

USC Viterbi School of Engineering Assistant Professor Qiming Wang and Ph.D. student Kun-Hao Yu, along with MIT Professor Nicholas Fang and University of Missouri Professor Guoliang Huang, have developed 3-D printed metamaterials capable of blocking sound waves and mechanical vibrations. Unlike current metamaterials, these can be turned on or off remotely using a magnetic field. Their materials can be used for noise cancellation, vibration control and sonic cloaking, which can be used to hide objects from acoustic waves.

"When you fabricate a structure, the geometry cannot be changed, which means the property is fixed. The idea here is, we can design something very flexible so that you can change it using external controls," said Wang, an assistant professor of civil and environmental engineering.

Metamaterials can be used to manipulate wave phenomena such as radar, sound and light and have been used to develop technology such as cloaking devices and improved communication systems. The team's metamaterials are able to control environmental sounds and structural vibrations, which have similar waveforms. By 3-D printing a deformable material containing iron particles in a lattice structure, their metamaterials can be compressed using a magnetic field.

"You can apply an external magnetic force to deform the structure and change the architecture and the geometry inside it. Once you change the architecture, you change the property," Wang said. "We wanted to achieve this kind of freedom to switch between states. Using magnetic fields, the switch is reversible and very rapid."

The magnetic field compresses the material, but unlike a physical contact force like a metal plate, the material is not constrained. Therefore, when an acoustic or mechanical wave contacts the material, it perturbs it, generating the unique properties that block sound waves and mechanical vibrations of certain frequencies from passing through.

The mechanism relies on the abnormal properties of their metamaterials - negative modulus and negative density. In everyday materials, these are both positive.

"Material with a negative modulus or negative density can trap sounds or vibrations within the structure through local resonances so that they cannot transfer through it," Yu said.

Typically, when you push on an object, it pushes back against you. In contrast, objects with a negative modulus attract you, pulling you towards them as you push. Objects exhibiting a negative density work in a similarly contradictory way. When you push these objects away from you, they instead move toward you.

One negative property, either negative modulus or negative density, can work independently to block noise and stop vibrations within certain frequency regimes. However, when working together, the noise or vibration can pass through again. The team is able to maintain versatile control over the metamaterial, switching among double-positive (sound passing), single-negative (sound blocking), and double-negative (sound passing) just by switching the magnetic field.

"This is the first time researchers have demonstrated reversible switching among these three phases using remote stimuli," Wang said.

Future directions

Wang believes they may be able to demonstrate another unique property called negative refraction, in which a wave goes through the material and comes back in at an unnatural angle, which according to Wang is, "anti-physics." They plan to study this phenomenon further once they are able to fabricate larger structures.

"We want to scale down or scale up our fabrication system," Wang said. "This would give us more opportunity to work on a larger range of wavelengths."

With their current system, they can only 3-D print material with a beam diameter between a micron to a millimeter. But size matters. Smaller beams would control higher frequency waves, and larger beams would affect lower frequency waves.

"There are indeed a number of possible applications for smartly controlling acoustics and vibrations," Yu said. "Traditional engineering materials may only shield from acoustics and vibrations, but few of them can switch between on and off."
-end-
Their study was published in Advanced Materials in April. Funding for this project was provided by the National Science Foundation and the Air Force Office of Scientific Research Young Investigator Program.

USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm that is now key to cell phone technology and numerous data applications. One of the school's guiding principles is engineering +, a term coined by current Dean Yannis C. Yortsos, to use the power of engineering to address the world's greatest challenges. USC Viterbi is ranked among the top graduate programs in the world and enrolls more than 6,500 undergraduate and graduate students taught by 185 tenured and tenure-track faculty, with 73 endowed chairs and professorships. http://viterbi.usc.edu/?

University of Southern California

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.