Nav: Home

Driving a wedge into historic gaps of climate science

April 11, 2019

Evidence of historic marine life present in Alaskan permafrost is helping scientists reconstruct ancient changes in the ice cover over the Arctic Ocean.

Hokkaido University researchers and colleagues have found that the Beaufort Sea, on the margin of the Arctic Ocean, was not completely frozen over during the coldest summers of the late Ice Age, some 12,800 years ago. Their methodology, using ice wedges from the Alaskan permafrost, could help scientists further reconstruct historic sea-ice conditions in the Arctic Ocean, and thus improve forecasts for the future.

Scientists have long studied ice core samples from large permanent ice masses in the Antarctic ice sheet around the South Pole, and in Greenland near the North Pole. These samples contain relics from our climate's distant past, such as ions, dust particles, sea salts, volcanic ash and air bubbles, which can give us information on how Earth's climate has changed over thousands and thousands of years.

Now, a research team led by Yoshinori Iizuka of Hokkaido University's Institute of Low Temperature Science has found a way to investigate the geological history of areas near the north Arctic sea, which had previously been difficult using standard methods.

Permafrost is a layer of frozen ground present under the tundra of high northern latitudes in areas such as Russia, Canada, and Alaska. It contains massive wedges of ice that form when meltwater freezes in underground cracks. Iizuka and his team investigated ion concentrations in an ice wedge sample collected near the city of Barrow in northern Alaska. Another group dated this ice wedge back in 2010 to belonging to the late Pleistocene period, which represents the latter end of the last Ice Age some 14,400 to 11,400 years ago.

The team tested the levels of several ions in the ice wedge, including calcium sulphate, sodium, chloride, and bromide. Significantly, they determined that methanesulfonate (MS) ions in the wedge reliably indicated marine life activity, as they originated from oxidized dimethyl sulphide, a compound produced by plankton and ice algae attached to seasonal sea ice in the summer.

MS ion concentrations were high in the parts of the wedge representing the coldest periods of the late Pleistocene, from 12,900 to 12,700 years ago. This indicates that, even during these coldest periods of the late Ice Age, the near-shore region of the Beaufort Sea near Barrow may not have been completely filled by permanent ice, and that some open water existed in this area during the summers.

The team concludes in their study in the journal Earth and Planetary Science Letters that further studies of MS, bromide and sodium concentrations in other permafrost ice wedges could help scientists reconstruct past Arctic sea-ice conditions. In addition, according to Dr. Iizuka, "Understanding the mechanisms behind fluctuations in the Arctic sea ice provides a useful foundation for developing future strategies related to the Arctic region."
-end-


Hokkaido University

Related Permafrost Articles:

How horses can save the permafrost
Permafrost soils in the Arctic are thawing. In Russia, experiments are now being conducted in which herds of horses, bison and reindeer are being used to combat this effect.
Arctic permafrost thaw plays greater role in climate change than previously estimated
Abrupt thawing of permafrost will double previous estimates of potential carbon emissions from permafrost thaw in the Arctic, and is already rapidly changing the landscape and ecology of the circumpolar north, a new CU Boulder-led study finds.
Rising global temperatures turn northern permafrost region into significant carbon source
A new study that incorporates datasets gathered from more than 100 sites by institutions including the US Department of Energy's (DOE) Argonne National Laboratory, suggests that decomposition of organic matter in permafrost soil is substantially larger than previously thought, demonstrating the significant impact that emissions from the permafrost soil could have on the greenhouse effect and global warming.
Sea-ice-free Arctic makes permafrost vulnerable to thawing
New research, published today in Nature, led by scientists at the University of Oxford's Department of Earth Sciences, and at the Geological Survey of Israel, provides evidence from Siberian caves suggesting that summer sea ice in the Arctic Ocean plays an essential role in stabilising permafrost and its large store of carbon.
Replacing one gas with another helps efficiently extract methane from permafrost
Scientists from Skoltech and Heriot-Watt University proposed extracting methane by injecting flue gas into permafrost hydrate reservoirs.
Thawing permafrost affecting northern Alaska's land-to-ocean river flows
A new analysis of the changing character of runoff, river discharge and other hydrological cycle elements across the North Slope of Alaska reveals significant increases in the proportion of subsurface runoff and cold season discharge, changes the authors say are 'consistent with warming and thawing permafrost.' First author and lead climate modeler Michael Rawlins at UMass Amherst says warming is expected to shift the Arctic from a surface water-dominated system to a groundwater-dominated system, with deeper water flow paths through newly thawed soils.
Arctic permafrost melting will aggravate the greenhouse effect
Scientists from Russia and the United States studied the composition of the deep layers of permafrost in Eastern Siberia to better understand the hazards of permafrost thawing to our planet and its inhabitants.
Gene transcripts from ancient wolf analyzed after 14,000 years in permafrost
RNA -- the short-lived transcripts of genes -- from the 'Tumat puppy', a wolf of the Pleistocene era has been isolated, and its sequence analyzed in a new study by Oliver Smith of the University of Copenhagen and colleagues publishing on July 30 in the open-access journal PLOS Biology.
Widespread permafrost degradation seen in high Arctic terrain
Rapid changes in terrain are taking place in Canada's high Arctic polar deserts due to increases in summer air temperatures.
Arctic rivers provide fingerprint of carbon release from thawing permafrost
The feedback between a warming climate and accelerated release of carbon currently frozen into permafrost around the Arctic is one of the grand challenges in current climate research.
More Permafrost News and Permafrost Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.