Bright spot analysis for photodynamic diagnosis of brain tumors using confocal microscopy

April 11, 2019

[Background]

Photodynamic diagnosis using 5-aminolevulinic acid (5-ALA) is now widely used for neurosurgical resection of brain tumors. Distinguishing a tumor from healthy tissue is based on greater 5-ALA-derived protoporphyrin IX accumulation in glioma cells than in non-cancerous cells, resulting in much greater red fluorescence (peak at 635 nm) when excited at 405 nm. However, it is still difficult to precisely distinguish the tumor margin and infiltrating regions from non-tumor tissue because the fluorescent boundary is usually vague. In our previous study, we noticed that bright spots in confocal microscopy images may be able to distinguish tumors from normal tissue.

[Methods]

Brain tumor tissues resected from 5-ALA-treated patients was sectioned to evaluate bright spots captured by a 544.5-619.5 nm wavelength band-pass filter that eliminated the fluorescence induced by 5-ALA under a confocal microscope. Boarder regions and adjacent normal tissues were observed. Pathological inspection was performed to confirm the locations of tumors, infiltrating tumor cells, and normal tissue regions by hematoxylin and eosin (H&E) staining of serial sections of the same samples. Bright spot areas were measured in the same region used for pathological inspection. This method was applied to brain tumors with and without red fluorescence as well as glioblastoma (GBM) and non-GBM brain tumors.

[Results]

The bright spot area was substantially smaller in the GBM tumor than in normal brain tissues. It was also smaller in infiltrating tumors than in normal tissue at the margin. The same bright spot pattern was observed in tumors tissues without red fluorescence and in non-GBM tumors. Bright spot fluorescence has been suggested to be derived from lipofuscin based on emission spectra (mainly within 544.5?619.5 nm) and an optimal excitation wavelength (about 405 nm).

[Significance and future prospects]

Bright spot analysis is useful to facilitate discrimination of an infiltrating tumor from bordering normal tissue in photodynamic diagnosis using 5-ALA. This method is also potentially useful for tumors without 5-ALA-derived red fluorescence and non-GBM tumors. The mechanism of bright spot fluorescence reduction in tumors and its application for precise discrimination of brain tumors should be investigated further.
-end-


Kanazawa University

Related Brain Tumors Articles from Brightsurf:

Breakthrough blood test developed for brain tumors
Genetic mutations that promote the growth of the most common type of adult brain tumors can be accurately detected and monitored in blood samples using an enhanced form of liquid biopsy developed by researchers at Massachusetts General Hospital (MGH).

New study: Brain tumors may be seeded from distant site
A mouse model of glioblastoma, an aggressive type of cancer that can occur in the brain, suggests that this recalcitrant cancer originates from a pool of stem cells that can be a significant distance away from the resulting tumors.

Diagnosing brain tumors with a blood test
A simple but highly sensitive blood test has been found to accurately diagnose and classify different types of brain tumours, resulting in more accurate diagnosis, less invasive methods and better treatment planning in the future for the patients.

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.

New targets for childhood brain tumors identified
People with the genetic condition neurofibromatosis type 1 (NF1) are prone to developing tumors on nervous system tissue.

Understanding brain tumors in children
The causes of 40% of all cases of certain medulloblastomas -- dangerous brain tumors affecting children -- are hereditary.

Scientists breach brain barriers to attack tumors
The brain is a sort of fortress, equipped with barriers designed to keep out dangerous pathogens.

New treatment Strategy may thwart deadly brain tumors
New research reveals a promising strategy that makes glioblastoma susceptible to immune checkpoint inhibitors.

New treatment for brain tumors uses electrospun fiber
University of Cincinnati professor Andrew Steckl, working with researchers from Johns Hopkins University, developed a new treatment for glioblastoma multiforme, an aggressive form of brain cancer.

Cellular origins of pediatric brain tumors identified
A research team has discovered that several types of highly aggressive and, ultimately, fatal pediatric brain tumors originate during brain development.

Read More: Brain Tumors News and Brain Tumors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.