Ancient climate excursion linked to a rare anomaly in Earth's orbit

April 12, 2001

SANTA CRUZ, CA--About 23 million years ago, a huge ice sheet spread over Antarctica, temporarily reversing a general trend of global warming and decreasing ice volume. Now a team of researchers has discovered that this climatic blip at the boundary between the Oligocene and Miocene epochs corresponded with a rare combination of events in the pattern of Earth's orbit around the Sun.

In a paper published in the April 13 issue of the journal Science, the researchers show that the transient glaciation and other climatic variations during a period from about 20 to 25.5 million years ago correspond with variations in Earth's orbit known as Milankovitch cycles. Although the concept of such relationships is not new, some of the results were surprising, said James Zachos, a professor of Earth sciences at the University of California, Santa Cruz, and lead author of the paper.

"When we began examining the temporal relationship of the orbital oscillations relative to the oscillations in the climate record, we never suspected that the transient glaciation at 23 million years ago had anything to do with orbital anomalies," Zachos said.

The astrophysicist Milutin Milankovitch first proposed that cyclical variations in certain elements of Earth-Sun geometry can cause major changes in Earth's climate. The main variables are eccentricity, obliquity, and precession. Eccentricity refers to the changing shape of Earth's orbit around the Sun, which varies from nearly circular to elliptical over a cycle of about 100,000 years. Obliquity refers to the angle at which Earth's axis is tilted with respect to the plane of its orbit, varying between 22.1 degrees and 24.5 degrees over a 41,000-year cycle. And precession is the gradual change in the direction Earth's axis is pointing, which completes a cycle every 21,000 years.

"Because there are several components of orbital variability, each with lower frequency components of amplitude modulation, there is the potential for unusual interactions between them on long timescales of tens of millions of years," Zachos said. "What we found at 23 million years ago is a rare congruence of a low point in Earth's eccentricity and a period of minimal variation in obliquity."

The result of this rare congruence was a period of about 200,000 years when there was unusually low variability in the planet's climate, with reduced extremes of seasonal warmth and coldness. Earth's orbit was nearly circular, so its distance from the Sun stayed about the same throughout the year. In addition, the tilt of Earth's axis, which gives rise to the seasons, varied less than usual. In other words, the tilt doesn't always vary between the same extremes in its 41,000-year cycles; the obliquity cycle itself varies in amplitude over a longer period of about 1.25 million years. Similarly, the eccentricity cycle peaks every 400,000 years.

The combination of a low-amplitude "node" in the obliquity cycle and a minimum in eccentricity would have caused only several degrees difference in summer temperatures at the poles, but it was probably enough to allow the Antarctic ice sheet to expand, Zachos said.

Zachos's collaborators on the paper were Nicholas Shackleton and Heiko Pälike of Cambridge University, Justin Revenaugh of UC Santa Cruz, and Benjamin Flower of the University of South Florida.

The researchers obtained detailed climate records for the late Oligocene and early Miocene by analyzing sediment cores drilled out of the ocean floor. Cutting through layers of sediments laid down over millions of years, such cores contain a chronological record of past climates written in the chemistry of fossilized shells left behind by tiny marine organisms. Oxygen isotopes in the shells, for example, reflect ocean water temperatures and the amount of ice trapped in glaciers.

In the 1970s, scientists using these techniques obtained the first good evidence in support of Milankovitch's theory, almost 50 years after he had proposed it. According to Zachos, researchers are still trying to get a handle on the relationships between climate cycles and orbital variations. Since most of the research has focused on the past 5 million years, the new paper is valuable because it looks at a more distant window in time when conditions on the planet were different.

In the period they examined, the late Oligocene and early Miocene, Zachos and his collaborators found evidence of several climate cycles with frequencies corresponding to the Milankovitch cycles. But the correspondence of the orbital anomaly with the transient glaciation event at the boundary between the two epochs is especially interesting, Zachos said. The climate system seems to have undergone a fundamental shift at this boundary, which also marks a major break in the paleontologic record.

"I'm not sure everyone will be convinced that the orbital anomaly alone is responsible," Zachos said. "But the congruence of those orbital cycles is a very rare event, and the fact that it exactly corresponds with this rare climatic event is compelling."
-end-
Editor's note: Reporters may contact Zachos at (831) 459-4644 or jzachos@es.ucsc.edu.

This release is available electronically at the following web site: http://press.ucsc.edu.

University of California - Santa Cruz

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.