U of I study: Lack of omega-6 fatty acid linked to severe dermatitis

April 12, 2010

URBANA -University of Illinois scientists have learned that a specific omega-6 fatty acid may be critical to maintaining skin health.

"In experiments with mice, we knocked out a gene responsible for an enzyme that helps the body to make arachidonic acid. Without arachidonic acid, the mice developed severe ulcerative dermatitis. The animals were very itchy, they scratched themselves continuously, and they developed a lot of bleeding sores," said Manabu Nakamura, a U of I associate professor of food science and human nutrition.

When arachidonic acid was added to the animals' diet, the itching went away, he said.

Nakamura's team has been focusing on understanding the function of omega-3 and -6 fatty acids, and doctoral student Chad Stroud developed a mouse model to help them understand the physiological roles of these fats. By knocking out genes, they can create deficiencies of certain fats and learn about their functions.

"Knocking out a gene that enables the body to make the delta-6-desaturase enzyme has led to some surprising discoveries. In this instance, we learned that arachidonic acid is essential for healthy skin function. This new understanding may have implications for treating the flaky, itchy skin that sometimes develops without an attributable cause in infants," he said.

Nakamura explained that our bodies make arachidonic acid from linoleic acid, an essential fatty acid that we must obtain through our diets. It is found mainly in vegetable oils.

Scientists have long attributed healthy skin function to linoleic acid, which is important because it provides the lipids that coat the outer layer of the skin, keeping the body from losing water and energy, which would retard growth, the scientist said.

But skin function seems to be more complicated than that. These itchy mice had plenty of linoleic acid. They just couldn't convert it to arachidonic acid because the gene to make the necessary enzyme had been knocked out, he noted.

Arachidonic acid is also essential to the production of prostaglandins, compounds that can lead to inflammatory reactions and are important to immune function. Common painkillers like aspirin and ibuprofen work by inhibiting the conversion of arachidonic acid to prostaglandins.

"We usually think of inflammation as a bad thing, but in this case, prostaglandins prevented dermatitis, which is an inflammatory reaction. We measured prostaglandin levels in the animals' skin, and when we fed arachidonic acid to the knockout mice, they resumed making these important chemical compounds," he said.

Nakamura cautioned that there are still things they don't understand about the function of this omega-6 fatty acid. "This new knowledge is a starting point in understanding the mechanisms that are involved, and we need to do more research at the cellular level."
-end-
The study was published in a recent issue of the Journal of Lipid Research. Co-authors are Chad K. Stroud, Takayuki Y. Nara, Manuel Roqueta-Rivera, Emily C. Radlowski, Byung H. Cho, Mariangela Segre, Rex A. Hess, and Wanda M. Haschek, all of the U of I, and Peter Lawrence, Ying Zhang, and J. Thomas Brenna of Cornell University. Funding was provided in part by a USDA National Needs Fellowship Award and a grant from the National Institutes of Health.

University of Illinois at Urbana-Champaign

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.