Scientists find key to gene that promotes cancer metastasis

April 12, 2010

HOUSTON - The molecular machinery that switches on a gene known to cause breast cancer to spread and invade other organs has been identified by an international team led by scientists at The University of Texas M. D. Anderson Cancer Center. The paper was published Sunday in Nature Cell Biology's advanced online publication.

The discovery provides a target-rich environment for development of drugs to thwart expression of the RhoA gene, according to Hui-Kuan Lin, Ph.D., the paper's senior author and an assistant professor in M. D. Anderson's Department of Molecular and Cellular Oncology. RhoA overexpression has been implicated in cancer metastasis.

"There are four components to this complex, which starts RhoA expression by transcribing the gene, and we found that all of them are important to metastasis," Lin said. "Knock down any one of the four, and you can stop breast cancer metastasis by preventing RhoA expression."

Researchers built their case with a series of laboratory experiments on cell lines, followed by confirmation in a mouse model of breast cancer metastasis and then analysis of 64 prostate cancer tumors that showed overexpression of RhoA or three of its transcription complex components were strongly correlated with metastatic disease.

Transcription is the first step on a gene's path to expressing its protein. Transcription factors bind to the promoter region of the gene, causing a copy of RNA to be made from the DNA of the gene. The RNA is then translated into the corresponding protein.

The team first established the Myc protein as a transcription factor that binds to RhoA's promoter region. Knocking down Myc in cancer cell lines decreased RhoA expression, cell migration and invasion, while Myc overexpression increased all three.

Next, they found that the Skp2 overexpression also results in more RhoA, and that both Skp2 and Myc were required for the metastasis-producing RhoA to be overexpressed.

This cancer-promoting pathway is the second way Skp2 fuels cancer growth, Lin said. Skp2 has been shown to work through a separate E3 ligase pathway to destroy tumor-suppressing proteins, causing heightened cellular proliferation and the transition from normal cell to tumor.

"Skp2's E3 ligase activity is required for tumorigenesis, but not involved at all in metastasis," Lin said. Lin and colleagues also previously found that Skp2 blocks cellular senescence - a halt in cell division - in cancer cells.

The research team then found that Skp2 recruits two other proteins, p300 and Miz1, to join Myc and form the complex that transcribes RhoA.

Experiments in a mouse model of breast cancer metastasis to the lung showed that deficiency of either Myc, Skp2 or Miz1 restricted metastasis, while overexpression of each of the three proteins increased cell migration and invasion. Skp2 knockdown, for example, resulted in no metastatic nodules in the lung, compared with an average of 40 nodules when Skp2 was expressed.

Directly knocking down RhoA expression produced the same effect as blocking the Myc-Skp2-Miz1 complex. Knocking down expression of p300 resulted in decreased expression of RhoA.

In the analysis of prostate cancer tumors, expression of RhoA, Myc, Skp2 and Miz1 were significantly correlated with metastasis. Expression of the RhoA and the Myc-Skp2-Miz1 complex also were highly correlated.

Lin and colleagues note that Miz1 is thought to be a tumor-suppressor that contends with the oncogene Myc to regulate genes. In this case, the tumor-suppressor cooperates with the oncogene to launch RhoA and promote metastasis.

"Right now, there are no small-molecule agents to inhibit any of these targets," Lin said. "One future direction of research will be to find ways to target the entire transcription complex or its individual components."
-end-
Funding for this research comes from M. D. Anderson's Research Trust Scholar funds, The National Cancer Institute's Prostate Cancer Specialized Program in Research Excellence at M. D. Anderson and a Department of Defense New Investigator Award to Lin.

In addition to Lin, other co-authors from M. D. Anderson's Department of Molecular and Cellular Oncology include: first author Chia-Hsin Chan, M.D.; Szu-Wei Lee, also also a graduate student in The University of Texas Graduate School of Biomedical Sciences at Houston; Jing Wang, Ph.D.; Wei-Lei Yang, M.D., Ching-Yuan Wu, M.D., also with Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, Taiwan, Juan Wu, also with State Key Laboratory of Oncology in South China and Sun Yat-Sen University Cancer Center; and Mien-Chie Hung, Ph.D., department chair, also on the faculty of The University of Texas Graduate School of Biomedical Sciences at Houston, and Center for Molecular Medicine and Graduate Institute of Cancer Biology at China Medical University and Hospital, Taiwan. Other authors include: Chien-Feng Li, M.D., Department of Pathology at Chi-Mei Medical Center; Keiichi I. Nakayama, M.D., Ph.D., Medical Institute of Bioregulation at Kyushu University at Fukuoka, Japan; Hong-Yo Kang, Ph.D., and Hsuan-Ying Huang, M.D, Graduate Institute of Clinical Medical Sciences at Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine; Pier Paolo Pandolfi, M.D., Ph.D., Cancer Genetics Program at Beth Israel Deaconess Cancer Center and Department of Medicine and Pathology at Beth Israel Deaconess Medical Center at Harvard Medical School.



About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

University of Texas M. D. Anderson Cancer Center

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.