Researchers reveal developmental mechanisms behind rare bone marrow disorder

April 12, 2017

Myelodysplastic syndrome is an umbrella term used to describe disorders characterized by the bone marrow's inability to produce normal blood cells. Researchers from Charité - Universitätsmedizin Berlin have found that a mutation in a specific tumor suppressor gene is one possible reason why children with a very rare genetic disorder develop myelodysplastic syndrome. Results from this research have been published in the current edition of the Journal of Clinical Investigation*.

The key symptoms of myelodysplastic syndrome (MDS) are a shortage of fully-functional red blood cells (erythrocytes), a shortage of certain white blood cells (leukocytes), and a shortage of platelets (thrombocytes). In a healthy person, these three types of cells are produced in the bone marrow. In patients with MDS, blood cell production is disrupted - a condition which may result in these patients progressing to acute myeloid leukemia (AML).

While looking for the cause of a rare disease, a team of researchers led by Prof. Dr. Annette Grüter-Kieslich, Head of the Department of Pediatric Endocrinology and Diabetology, discovered a potential trigger for MDS development in children with monosomy 7 of the bone marrow. All of these children had lost one copy of chromosome 7, whereas normally, a person has two copies of each of the 23 chromosomes found in the human body.

Working with colleagues in England and Freiburg, the researchers studied a total of seven children, all of whom presented with similar symptoms: congenital adrenal insufficiency, gonadal failure, and severe pulmonary infections. Using innovative genetic testing methods, the researchers identified mutations in a tumor suppressor gene, SAMD9, which is located on chromosome 7. Through additional testing in different cell systems, the researchers were able to show that these inherited mutations were responsible for the children's severe developmental problems. They were also able to show that both monosomy 7 and myelodysplastic syndrome developed in response to these mutations.

"Bone marrow cells which have lost the mutated chromosome 7 have a considerable selection advantage," explains Prof. Annette Grüters-Kieslich. She adds: "In patients with malignant conditions, complete or partial chromosome loss may not be a random event. Instead, it may represent a mechanism specifically aimed at eliminating genetic defects. The significance of this developmental mechanism for myelodysplasia, which has been described here for the first time, may therefore reach far beyond this rather rare disease."

The researchers are hoping to work with other centers in order to test whether SAMD9 mutations may also be responsible for causing other subtypes of myelodysplastic syndrome.
-end-


Charité - Universitätsmedizin Berlin

Related Bone Marrow Articles from Brightsurf:

Researchers identify the mechanism behind bone marrow failure in Fanconi anaemia
Researchers at the University of Helsinki and the Dana-Farber Cancer Institute have identified the mechanism behind bone marrow failure developing in children that suffer from Fanconi anaemia.

Nanoparticles can turn off genes in bone marrow cells
Using specialized nanoparticles, MIT engineers have developed a way to turn off specific genes in cells of the bone marrow, which play an important role in producing blood cells.

How stress affects bone marrow
Researchers from Tokyo Medical and Dental University (TMDU) identified the protein CD86 as a novel marker of infection- and inflammation-induced hematopoietic responses.

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.

Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.

Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.

Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.

Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.

Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.

Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.

Read More: Bone Marrow News and Bone Marrow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.