Nav: Home

Potential new applications stem from controlling particles' spin configurations

April 12, 2017

Fermions are ubiquitous elementary particles. They span from electrons in metals, to protons and neutrons in nuclei and to quarks at the sub-nuclear level. Further, they possess an intrinsic degree of freedom called spin with only two possible configurations, either up or down. In a new study published in EPJ B, theoretical physicists explore the possibility of separately controlling the up and down spin populations of a group of interacting fermions. Their detailed theory describing the spin population imbalance could be relevant, for instance, to the field of spintronics, which exploits polarised spin populations.

Imbalanced Fermi particle mixtures occur in matter like, for example, semiconductors placed in a magnetic field, in nuclear matter, and in the plasma of neutron stars, which combines the elementary sub-particles quarks and gluons. Pierbiagio Pieri and Giancarlo Calvanese Strinati from the University of Camerino, Italy, focused on an interacting fermion system where the up and down spin populations are imbalanced. They extended the proof of a theorem that was originally conceived for the exact theory of a Fermi liquid with equal populations of up and down spin, called the Luttinger theorem, to these imbalanced systems.

Previous experimental observations involved separately controlling the number of fermions with a given spin, leading to free movement with no viscosity in the gas particles, reaching a superfluid state. The work by Wolfgang Ketterle and his group at MIT, USA, in 2008, also demonstrated that the difference between two spin populations can be made so large that superfluidity is destroyed and the system remains normal even at zero temperature.

In turn, this latest theoretical work introduces a constraint that is key to numerical calculations for such large quantum many-body systems, namely that the radii of the two Fermi spheres, which characterise the non-interacting systems of spin-up and spin-down fermions, are separately preserved when the interaction between the spin-up and spin-down fermions is initiated.
-end-
Reference:

P. Pieri and G. C. Strinati (2017), Luttinger theorem and imbalanced Fermi systems, Eur. Phys. J. B 90:68, DOI 10.1140/epjb/e2017-80071-2

Springer

Related Quarks Articles:

Scientists shed light on mystery of dark matter
Nuclear physicists at the University of York are putting forward a new candidate for dark matter -- a particle they recently discovered called the d-star hexaquark.
Exploring strangeness and the primordial Universe
Within quark-gluon plasma, strange quarks are readily produced through collisions between gluons.
Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
Using supercomputer, TIFR's physicists have predicted the existence of deuteron-like exotic nuclei for the first time as well as provided their masses precisely.
FSU physics researchers break new ground, explore unknown energy regions
Florida State University physicists are using photon-proton collisions to capture particles in an unexplored energy region, yielding new insights into the matter that binds parts of the nucleus together.
A novel tool to probe fundamental matter
The origin of matter remains a complex and open question.
CEBAF turns on the charm
The world's most advanced particle accelerator for investigating the quark structure of the atom's nucleus has just charmed physicists with a new capability.
Physicists reveal why matter dominates universe
Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.
Physicists solve 35-year-old mystery about quarks
Physicists from Tel Aviv University, the Massachusetts Institute of Technology and the Thomas Jefferson National Accelerator Facility now know why quarks, the building blocks of the universe, move more slowly inside atomic nuclei, solving a 35-year-old-mystery.
Study of quark speeds finds a solution for a 35-year physics mystery
MIT physicists now have an answer to a question in nuclear physics that has puzzled scientists for three decades: Why do quarks move more slowly inside larger atoms?
Merging neutron stars
The option to measure the gravitational waves of two merging neutron stars has offered the chance to answer some of the fundamental questions about the structure of matter.
More Quarks News and Quarks Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.