Nav: Home

On-the-range detection technology could corral bovine TB

April 12, 2017

LOS ALAMOS, N.M., April 12, 2017--A research breakthrough allowing the first direct, empirical, blood-based, cow-side test for diagnosing bovine tuberculosis (TB) could spare ranchers and the agriculture industry from costly quarantines and the mass slaughter of animals infected with this easily spread disease.

"We have adapted an assay originally developed for human TB to bovine TB, a particular challenge because the bovine disease is caused by a different species of the pathogen," said Harshini Mukundan, leader of the Chemistry for Biomedical Applications team at Los Alamos National Laboratory that developed the assay and corresponding author on the study, published this week in the journal Analytical Sciences.

"We have validated the assay in cows that were positive controls of a vaccination study done at the US Department of Agriculture, tested at different time points during the course of infection. This work supports the global One Health strategy -- developing diagnostics that are not host limited," Mukundan said.

TB is one of the oldest known diseases, and it infects both animals and humans. In cattle, Mycobacterium bovis causes the disease, which easily spreads among large herds, periodically resulting in the quarantine and destruction of thousands of cattle in the United States, Canada and abroad and restricting international shipments. It also infects wild deer and elk, which can pass it on to domestic cattle with which they graze. A skin test to detect exposure or infection is used in cattle, but due to various colors of cows' skin and hide, environmental exposures, previous testing for M. bovis and other factors, the visual assessment can be inconclusive. Further, Mukundan notes, gathering a herd once for testing and then again 48 hours later for reading the skin results can be a challenge in itself.

The idea for the bovine application evolved from discussions between Laboratory researchers and scientists at the New Mexico health laboratory, who recognized the need for rapid detection by ranchers seeking to ship their herds. "It's one of these things that took on a life of its own," Mukundan said. The conversations eventually included a request from the New Mexico Livestock Board's state veterinarian at the time, David Fly, who reached out to the New Mexico Small Business Assistance program (which involves Los Alamos and Sandia national laboratories). Mukundan's team responded, collaborating with a number of interested ranchers in the state.

Infection of humans with M. tuberculosis can be recognized in blood by a biomarker called lipoaribinomannan (LAM), but it has been difficult to detect because LAM is a lipid, a greasy molecule that doesn't blend with the watery blood and so eludes regular testing techniques. Targeting the body's fat transport system, the lipoproteins (such as HDL and LDL measured for cholesterol analysis) allowed the researchers to measure LAM in blood.

To detect it, the Los Alamos team has developed a novel assay - lipoprotein capture - which exploits the interaction of LAM with host lipoproteins and can thereby detect it in blood. Combined with a highly sensitive waveguide-based optical biosensor for the rapid, sensitive and specific detection of pathogenic biomarkers, the team has effectively identified greasy biomarkers associated with diseases like tuberculosis, food poisoning, leprosy and others.

In cattle, the TB infection M. bovis secretes a similar biomarker called lipomannan (LM). The team adapted the human assay to target LM, thereby suggesting the possibility of a molecular cow-side test for bovine TB.

Key outcomes from the research include the following:
  • The team can directly measure pathogen biomarkers in bovine blood, which allows medical specialists to discriminate between simple exposure and actual infection.
  • This is the first profile of the LM biomarker in bovine blood over a full one-year time period.
  • The same assays applied to humans can thus be transitioned to assessing cattle, elephants and other species, supporting a global One Health strategy for diagnosis.

Research such as the TB detection project aligns with the Laboratory's national security science mission in providing innovative tools for improving responses to emerging threats to health. In addition to Mukundan, the team includes Dung Vu of Los Alamos, Rama Sakamuri (a post-doctoral fellow who has since left Los Alamos) and Basil Swanson and Ray Waters from the US Department of Agriculture (USDA).

What's next? "We are hoping to work with the New Mexico Livestock Board and the USDA to evaluate infected animals in the real world," Mukundan said.

"It will be wonderful if the assay can be adapted to a rapid cow-side test that can be used by ranchers and farmers to effectively diagnose bovine TB. I am especially interested in providing something concrete to farmers and veterinarians in our state, the New Mexico Livestock Board and the USDA, all of whom require such a test," she said.
-end-
The paper: "Detection of Lipomannan in Cattle Infected with Bovine Tuberculosis," Dung M. Vu*, Rama M. Sakamuri*, W. Ray Waters**, Basil I. Swanson*, and Harshini Mukundan*

* Chemistry Division, MS J567, Los Alamos National Laboratory,

**National Animal Disease Center, Agriculture Research Service, US Department of Agriculture, Ames, IA

Videos about Dr. Mukundan's work:

TEDx Los Alamos talk: https://www.youtube.com/watch?v=7BxTbjtI8qo

https://www.youtube.com/watch?v=NkF3_waOfFk

and https://www.youtube.com/watch?v=stTukjqyVOY (video courtesy of New Mexico Tech Council).

Funding: This work was supported by funding from the New Mexico Small Business Assistance (NMSBA) program (http://www.nmsbaprogram.org/), the US Department of Agriculture and the Los Alamos Research and Development (LDRD), Directed Research Program. Ranchers and veterinarians in the state of New Mexico supported this work via NMSBA. The Foundation for Innovative New Diagnostics (FIND) supported the effort by providing required antibodies for the detection.

About the CDC's One Health program: https://www.cdc.gov/onehealth/global-activities/index.html

About Bovine TB, from USDA: http://bit.ly/2o2HZCL

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

DOE/Los Alamos National Laboratory

Related Tuberculosis Articles:

Tuberculosis: New insights into the pathogen
Researchers at the University of Würzburg and the Spanish Cancer Research Centre have gained new insights into the pathogen that causes tuberculosis.
Unmasking the hidden burden of tuberculosis in Mozambique
The real burden of tuberculosis is probably higher than estimated, according to a study on samples from autopsies performed in a Mozambican hospital.
HIV/tuberculosis co-infection: Tunneling towards better diagnosis
1.2 million people in the world are co-infected by the bacteria which causes tuberculosis and AIDS.
Reducing the burden of tuberculosis treatment
A research team led by MIT has developed a device that can lodge in the stomach and deliver antibiotics to treat tuberculosis, which they hope will make it easier to cure more patients and reduce health care costs.
Tuberculosis: Commandeering a bacterial 'suicide' mechanism
The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein.
A copper bullet for tuberculosis
Tuberculosis is a sneaky disease, and the number one cause of death from infectious disease worldwide.
How damaging immune cells develop during tuberculosis
Insights into how harmful white blood cells form during tuberculosis infection point to novel targets for pharmacological interventions, according to a study published in the open-access journal PLOS Pathogens by Valentina Guerrini and Maria Laura Gennaro of Rutgers New Jersey Medical School, and colleagues.
How many people die from tuberculosis every year?
The estimates for global tuberculosis deaths by the World Health Organisation (WHO) and the Institute for Health Metrics and Evaluation (IHME) differ considerably for a dozen countries, according to a study led by ISGlobal.
Beyond killing tuberculosis
Historically, our view of host defense against infection was that we must eliminate pathogens to eradicate disease.
Tuberculosis drugs work better with vitamin C
Studies in mice and in tissue cultures suggest that giving vitamin C with tuberculosis drugs could reduce the unusually long time it takes these drugs to eradicate this pathogen.
More Tuberculosis News and Tuberculosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.