Nav: Home

Targeting blood vessels to improve cancer immunotherapy

April 12, 2017

EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.

Cancer immunotherapy aims to enhance or restore the ability of the patient's immune system - namely T cells - to recognize and attack cancer. But tumors use several strategies to fight back immune attacks, making immunotherapy efficacious only in a minority of the patients. For example, they produce blood vessels that block, rather than facilitate, the arrival of T cells. EPFL scientists have now improved the efficacy of immunotherapy against different cancer types by reprogramming the tumor blood vessels. The study is published in Science Translational Medicine, and is featured on the cover of the journal.

Starving tumors

Tumor blood vessels are essential for providing oxygen and nutrients to the growing cancer cells. The laboratory of Michele De Palma at EPFL focused on two proteins, called VEGFA and ANGPT2, which tumors produce to stimulate the growth of new blood vessels. Blocking the actions of VEGFA and ANGPT2 may curb the growth of the blood vessels, limit the provision of oxygen and nutrients, and starve the tumors.

To block both VEGFA and ANGPT2, the EPFL scientists used an antibody called A2V. The team tested A2V in experimental models of breast cancer, pancreatic cancer, and melanoma. They found that A2V provides clear therapeutic benefits, whereas antibodies that block either VEGFA or ANGPT2 alone had more limited efficacy. Importantly, A2V also inhibits metastasis, a condition that is frequently lethal in patients with cancer.

A2V reprograms the tumor blood vessels

Under the influence of VEGFA and ANGPT2, the tumor blood vessels also acquire an aberrant structure that impedes the passaging of T cells, thus limiting the efficacy of immunotherapy. A2V caused the regression of many tumor blood vessels, but some persisted after the therapy.

"One interesting finding was that A2V not only regressed most of the tumor blood vessels, but also reversed the aberrant features of those that had remained, making them similar to normal blood vessels and more permissive to the arrival of anti-tumoral T cells", says De Palma. Indeed, A2V promoted the "extravasation" of activated T cells into the tumors, a process that is required to initiate an immune response against the tumor.

A2V helps checkpoint blockers

Tumors can evade detection and attacks by patrolling immune cells, such as T cells. Tumors accomplish this by expressing certain proteins, called "immune checkpoint ligands". One of these is the protein PD-L1 (programmed death ligand 1), which binds a receptor (PD-1) that is present on the surface of T cells, stopping them from attacking the tumor. A way to circumvent this problem is to use drugs called checkpoint inhibitors. These are usually antibodies that find and bind the immune checkpoint proteins on tumors, thus leaving them open to immune attacks.

The EPFL researchers found that the accumulation of activated T cells around the tumor blood vessels, which was promoted by A2V therapy, also triggered a defensive response: the blood vessels started to produce the checkpoint ligand PD-L1 in an effort to "blind-sight" the attacking T cells. However, the researchers found that it is possible to overcome this setback by blocking the PD-1 receptor. Indeed, an anti-PD-1 antibody further improved the anti-tumoral effects of A2V.

"These data remind us that mechanisms of resistance to anti-cancer therapies are always beyond the corner. While A2V normalized the tumor blood vessels and facilitated the arrival of activated T cells, the anti-tumoral T cells became rapidly suppressed upon their extravasation to the tumor microenvironment", says De Palma.

The study has important implications for cancer immunotherapy. "Our work suggests that certain anti-angiogenic drugs, namely ANGPT2 inhibitors, have more profound effects on tumors than initially thought. Besides targeting the blood vessels, they also help initiate anti-tumoral immune responses, which can be reinforced by immune checkpoint blockade".
-end-
This work was mainly funded by the Leenaards Foundation, the Swiss Cancer League, the San Salvatore Foundation, and Roche. It also included contributions from the Roche Innovation Centers at Basel and Munich.

Reference

Martina Schmittnaegel, Nicolò Rigamonti, Ece Kadioglu, Antonino Cassará, Céline Wyser Rmili, Anna Kiialainen, Yvonne Kienast, Hans-Joachim Mueller, Chia-Huey Ooi, Damya Laoui, Michele De Palma. Dual angiopoietin-2 and VEGFA inhibition elicits anti-tumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (12 April 2017).

Ecole Polytechnique Fédérale de Lausanne

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.