Nav: Home

Lung stem cells repair airways after injury

April 12, 2018

The human airway is a system of branching tubes that connects the nose and mouth with the lungs and allows us to inhale air, extract the vital oxygen, and exhale the waste product carbon dioxide. A layer of epithelial cells helps protect airways from harmful materials in the air we breathe. However, the cells that make up this first line of defense are vulnerable to damage and rely on local stem cells to repair and renew the barrier after injury.

Working in mice, researchers at the University of Iowa have identified a new population of stem cells that appear to be important for regenerating the airway following severe injury. The cells, known as glandular myoepithelial cells (MECs), were found to be surprisingly flexible. The study, which was published April 12 in the journal Cell Stem Cell, found that MECs are able to develop into new replacement cells within their local environment, known as submucosal glands. More surprisingly, the MECs were also shown to be "reserve" stem cells for the lining of the airway, springing into action when the surface of the airway experiences severe damage, and developing into replacement cells there, too.

"We demonstrated that MECs can self-renew and differentiate into seven distinct cell types in the airway," says study co-first author Preston Anderson, a UI undergraduate working in the lab of John Engelhardt, UI professor and DEO of anatomy and cell biology. "No other cell type in the lung has been identified with this much stem cell plasticity."

Because humans have submucosal glands throughout the airway, this specialized niche for MECs may play a significant role in lung regeneration and disease.

The team further investigated the signaling mechanisms controlling the MECs regenerative ability. Focusing on a transcription factor protein called Lef-1 that they had previously shown to be important in glandular development, the researchers found that upregulation of Lef-1 enhances the ability of MECs to migrate, proliferate, and differentiate. Moreover, overexpression of Lef-1 in MECs was sufficient to activate the cells' regenerative response even in the absence of airway injury.

This finding suggests that manipulating Lef-1 signaling in MECs could have major implications for developing practical regenerative medicine approaches to treat airway diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis.

"We have identified a potentially important stem cell target and defined a central mechanism that engages stem cell regeneration," says Thomas Lynch, PhD, UI postdoctoral researcher and co-first author of the study. "We hope this new knowledge accelerates the development of regenerative medicines such as gene therapies and pharmaceuticals for lung diseases."
-end-
In addition to Anderson, Lynch and Engelhardt, the research team include colleagues in the UI Carver College of Medicine and UI College of Public Health and at Indiana University and Massachusetts General Hospital.

The research was funded in part by grants from the National Heart, Lung, and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, and the National Institute of Environmental Health Sciences.

University of Iowa Health Care

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Engineering Stem Cells for Tissue Regeneration
by Ngan F Huang (Author), Ngan F Huang (Editor), Nicolas L'Heureux (Editor), Song L (Editor)

Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Essentials of Stem Cell Biology
by Robert Lanza (Editor), Anthony Atala (Editor)

Stem Cells: Promise And Reality
by Lygia V Pereira (Author)

The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

The Science of Stem Cells
by Jonathan M. W. Slack (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#503 Postpartum Blues (Rebroadcast)
When a woman gives birth, it seems like everyone wants to know how the baby is doing. What does it weigh? Is it breathing right? Did it cry? But it turns out that, in the United States, we're not doing to great at asking how the mom, who just pushed something the size of a pot roast out of something the size of a Cheerio, is doing. This week we talk to anthropologist Kate Clancy about her postpartum experience and how it is becoming distressingly common, and we speak with Julie Wiebe about prolapse, what it is and how it's...