Nav: Home

Optical tweezers steer a chemical reaction from just 2 atoms

April 12, 2018

Highlighting the fine level of control modern chemists possess, researchers have trapped two single atoms - sodium and cesium - in separate "optical tweezers" and then maneuvered them together, resulting in a single molecule of sodium cesium (NaCs) with unique properties. The techniques involved in isolating exactly two atoms in this way, to prepare a single molecule, could enable the study of more diverse and more complex molecules, in isolation, as well as allow the synthesis of designer molecules for use in quantum information applications. Typically, when chemists run reactions, they mix up many reacting partners in hopes that those partners will productively collide. It's possible to manipulate atoms more deliberately than this with a scanning tunneling microscope tip, but even this process has limitations. Prior work seeking to more finely manipulate atoms towards more specific chemical reactions has achieved a chemical reaction using a single atomic ion immersed in a gas of many atoms. Here, however, Lee Liu and colleagues sought to achieve a reaction starting from just two atoms. To do so, they held a laser-cooled atom of sodium in an optical tweezer of one wavelength and a laser-cooled atom of cesium in an optical tweezer of another wavelength. Then, using a pulse of light, they maneuvered the individual laser-cooled atoms (with laser cooling being important for quantum applications) into a single NaCs molecule, which exhibited an excited state. Studying this molecule with spectroscopy revealed properties previously unobserved in NaCs, the authors say. Their approach paves the way to studying collisions between atoms and molecules in the "cleanest" environment possible.

American Association for the Advancement of Science

Related Molecules Articles:

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at