Nav: Home

Protein moonlighting

April 12, 2018

In 2013, the Nobel Prize in Physiology or Medicine was awarded to three scientists for their contributions to uncovering the mechanisms governing vesicle transport in cells. Their explanations provided both a conceptual and a mechanistic understanding of basic processes at the most fundamental level.

At the heart of this Nobel Prize-winning intracellular process lies SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), a superfamily of 60 proteins in mammalian cells that transport lipids and membrane proteins across the cells by facilitating the fusion of vesicles to their target membranes.

Biologists at UC Santa Barbara have now discovered a surprising, additional function for syntaxin 3S, a soluble form of a SNARE protein. The researchers found a new signaling pathway widely used by human and other mammalian cells. The team's results appear in the Journal of Biological Chemistry.

"What we found was very unorthodox and hadn't been known before," explained corresponding author Thomas Weimbs, a professor in UCSB's Department of Molecular, Cellular, and Developmental Biology. "Syntaxin 3S binds to transcription factors -- proteins involved in converting DNA into RNA -- and regulates the expression of the genes controlled by those factors. In fact, our initial results suggest that these genes play a role in cancer progression, but that remains to be definitively proved."

In a scientific first, the UCSB researchers showed that besides the well-established role of syntaxin 3 in membrane fusion, its novel soluble version is transported to the cell's nucleus and carries out a completely different function. In nature, many proteins have more than one function -- a phenomenon known as protein moonlighting.

That syntaxins -- and SNARE proteins in general -- are capable of moonlighting was unknown until now. Given that syntaxins are present in all cells and responsible for a large number of essential cell functions, the discovery that these proteins can carry out additional functions suggests that much more is yet to be discovered.

"Finding that syntaxin 3S functions as a nuclear regulator is the beginning of a story that opens up a new field of research," Weimbs said. "It's like a field of snow with no footsteps on it because nobody has done research on this, so we can pick and choose the most exciting directions to follow."

Weimbs and his colleagues identified similar nuclear-targeted soluble forms of other syntaxins, which indicates that this signaling pathway is a conserved, novel function common among these membrane-trafficking proteins.

In the future, the UCSB biologists would like to delineate how far-reaching the functions of these new soluble syntaxin versions are. Are there other unidentified forms of syntaxin that bind to similar nuclear import factors? Do they bind to different or similar transcription factors? Do they regulate different genes?
-end-
This work was supported by grants from the National Institutes of Health, the University of California Cancer Research Coordinating Committee, the Cancer Center of Santa Barbara and the Spanish Ministry of Education and Science.

University of California - Santa Barbara

Related Proteins Articles:

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.