Nav: Home

Harnessing microorganisms for smart microsystems

April 12, 2019

A research team at the Department of Mechanical Engineering at Toyohashi University of Technology has developed a method to construct a biohybrid system that incorporates Vorticella microorganisms. The method allows movable structures to be formed in a microchannel and combined with Vorticella. In addition, the biohybrid system demonstrates the conversion of motion from linear motion to rotation. The results of their research was published in the IEEE/ASME Journal of Microelectromechanical Systems on April 11th, 2019.

Complex control systems are required for the operation of smart microsystems, and their sizes should be reduced. Cells are expected to be applicable as alternatives to these complex control systems. Because a cell integrates many functions in its body and responds to its surrounding environment, cells are intelligent and can be used in smart micromechanical systems.

In particular, Vorticella convallaria has a stalk (approximately 100 μm in length) that contracts and relaxes, and it works as an autonomous linear actuator. The combination of stalks and movable structures will form an autonomous microsystem. However, the construction of biohybrid systems in a microchannel is difficult, as it is necessary to establish a cell patterning method and a biocompatible assembly process for the structure and cell.

The research group has developed a method to construct a biohybrid system that incorporates Vorticella. "Harnessing microorganisms requires that a batch assembly method be applied to the movable components in a microchannel. It is necessary to pattern a water-soluble sacrificial layer and confine the movable components in a microchannel," says Moeto Nagai, a lecturer at Toyohashi University of Technology and the leader of the research team. Vorticella cells were placed around blocks in the channel by applying magnetic force. These processes were applied to demonstrate how Vorticella converts the motion of a movable component.

"The concept of harnessing a component to a microorganism seems simple, but it is difficult for even a microfabrication expert to make harnesses that can follow the motions of microorganisms. Hazardous chemicals should be avoided, and a multidisciplinary approach should be taken," says Nagai. His group is familiar with microfabrication and has conducted considerable research in the field of microbiology. They found a biocompatible approach for making and releasing harnesses in a microchannel.

After permeabilized treatment, Vorticella stalks respond to changes in calcium ion concentration, and they can operate as calcium ion-responsive valves. The research team believes that calcium ion-sensitive motors of Vorticella will facilitate the realization of autonomous fluidic valves, regulators, and mixers, as well as wearable smart microsystems, such as an automated insulin infusion pump for diabetes.
-end-
Funding agency

This work was supported by JSPS KAKENHI (Grant Number 22810012, 25820087), the Ebara Hatakeyama Memorial Foundation, and The Foundation for the Promotion of Ion Engineering.

Reference:

Moeto Nagai, Kohei Tanizaki, Takayuki Shibata (2019). Batch Assembly of SU-8 Movable Components in Channel Under Mild Conditions for Dynamic Microsystems: Application to Biohybrid Systems, IEEE/ASME Journal of Microelectromechanical Systems, 10.1109/JMEMS.2019.2907285.

Toyohashi University of Technology

Related Microorganisms Articles:

Soil scientist researches nature versus nurture in microorganisms
Ember Morrissey, assistant professor of environmental microbiology at West Virginia University, uncovered that nature significantly affects how the tiny organisms under our feet respond to their current surroundings.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.
How microorganisms protect themselves against free radicals
There are numerous different scenarios in which microorganisms are exposed to highly reactive molecules known as free radicals.
Scientists' warning to humanity: Microbiology and climate change
When it comes to climate change, ignoring the role of microorganisms could have dire consequences, according to a new statement issued by an international team of microbiologists.
Climate change could affect symbiotic relationships between microorganisms and trees
An international research consortium mapped the global distribution of tree-root symbioses with fungi and bacteria that are vital to forest ecosystems.
Microorganisms on microplastics
A recent study shows that that the potentially toxin-producing plankton species Pfiesteria piscicida prefers to colonize plastic particles, where they are found in 50 times higher densities than in the surrounding water of the Baltic Sea and densities about two to three times higher than on comparable wood particles floating in the water.
Harnessing microorganisms for smart microsystems
A research team at the Department of Mechanical Engineering at Toyohashi University of Technology has developed a method to construct a biohybrid system that incorporates Vorticella microorganisms.
Microorganisms are the main emitters of carbon in Amazonian waters
A study performed with microorganisms inhabiting floodplains, which comprises 20 percent of the whole Amazon, showed that the microbial food chain produces 10 times more CO2 than the classical food chain, mostly by decomposing organic matter.
Plant seed research provides basis for sustainable alternatives to chemical fertilizers
Scientists assessed the seed microbiomes of two successive plant generations for the first time and discovered that seeds are an important vector for transmission of beneficial endophytes across generations.
More Microorganisms News and Microorganisms Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.