Nav: Home

Tiny light-up barcodes identify molecules by their twinkling

April 12, 2019

DURHAM, N.C. -- An imaging technique developed at Duke University could make it possible to peer inside cells and watch dozens of different molecules in action at once -- by labeling them with short strands of light-up DNA that blink on and off with their own unique rhythm.

"The idea is everything has its own heartbeat," said first author Shalin Shah, a Ph.D. student in electrical and computer engineering and computer science at Duke. "We call these time signals 'temporal barcodes.'"

When attached to cells or other objects and observed for enough time, these barcodes could be used to detect and tell apart any number of things at the molecular scale -- including particular proteins hidden among the tens of thousands the human body needs to function and grow.

The technique works by using the fleeting interactions between two complementary strands of DNA as they collide in solution. One strand is attached to a molecule that researchers want to study. The other is free-floating and carries a fluorescent dye that lights up when the two strands pair up and then goes dark once they come apart. When viewed under a microscope over time, the binding and unbinding creates a distinct flashing pattern that, decoded, acts as a fingerprint.

Traditional techniques distinguish molecules using different color dyes, or using one color but different DNA sequences and imaging in steps, washing them off one target before moving on to the next.

Shah and his colleagues say they can do better.

Working with Duke computer science professor John Reif and postdoctoral researcher Abhishek Dubey of Oak Ridge National Laboratory, the team's approach increases the number of different signals it's possible to distinguish with a single dye color. But rather than rely on multiple DNA sequences like previous single-color methods, they keep the sequence of the free-floating strand the same and instead tweak things like the length or number of repeating sequences on the strand attached to the molecule of interest. This lets them produce flashes with different frequencies, durations and brightness.

In a paper published online April 5 in the journal ACS Synthetic Biology, computer simulations suggest it's theoretically possible to distinguish as many as 56 different molecules simultaneously, each blinking on and off in the same color. And if multiple dye colors are used that number balloons to thousands. The researchers say their technique is also able to do so at a fraction of the cost of other methods, and without fading under the glare of the microscope over time.

In a companion paper published March 21 in the journal Nano Letters, the team also tested their approach in the lab. Shah and Reif designed seven different DNA devices, attached them to a glass surface, and imaged them using fluorescence microscopy. With less than an hour's worth of data they were able to use each device's distinct blinking behavior to distinguish them.

"Our goal is to develop an economical and simple, yet powerful method," Shah said. "The temporal intensity signals emitted are distinct and can act as a fingerprint."
-end-
The researchers will present their approach at the 16th Conference on Foundations of Nanoscience (FNANO19) in Snowbird, Utah, on April 15.

This work was supported by National Science Foundation Grants CCF-1813805 and CCF1617791.

CITATION: "Improved Optical Multiplexing With Temporal DNA Barcodes," Shalin Shah, Abhishek K. Dubey, and John Reif. ACS Synthetic Biology, April 5, 2019. DOI: 10.1021/acssynbio.9b00010

CITATION: "Programming Temporal DNA Barcodes for Single-Molecule Fingerprinting," Shalin Shah, Abhishek K Dubey and John Reif. Nano Letters, March 21, 2019. DOI: 10.1021/acs.nanolett.9b00590

Duke University

Related Dna Articles:

In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.