Nav: Home

The trouble with thaw

April 12, 2019

About one fourth of the Northern Hemisphere is covered in permafrost. Now, these permanently frozen beds of soil, rock, and sediment are actually not so permanent: They're thawing at an increasing rate.

Human-induced climate change is warming these lands, melting the ice, and loosening the soil. This may sound like any benign Spring thaw, but the floundering permafrost can cause severe damage: Forests are falling; roads are collapsing; and, in an ironic twist, the warmer soil is releasing even more greenhouse gases, which could exacerbate the effects of climate change.

From the first signs of thaw, scientists rushed to monitor emissions of the two most influential anthropogenic (human-generated) greenhouse gases (carbon dioxide and methane). But until recently, the threat of the third largest (nitrous oxide) has largely been ignored.

In the Environmental Protection Agency's (EPA) most recent report (from 2010), the agency rates these emissions as "negligible." Perhaps because the gas is hard to measure, few studies counter this claim.

Now, a recent paper shows that nitrous oxide emissions from thawing Alaskan permafrost are about twelve times higher than previously assumed. "Much smaller increases in nitrous oxide would entail the same kind of climate change that a large plume of CO2 would cause" says Jordan Wilkerson, first author and graduate student in the lab of James G. Anderson, the Philip S. Weld Professor of Atmospheric Chemistry at Harvard.

Since nitrous oxide is about 300 times more potent than carbon dioxide, this revelation could mean that the Arctic--and our global climate--are in more danger than we thought.

In August 2013, members of the Anderson lab (pre-Wilkerson) and scientists from the National Oceanic and Atmospheric Administration (NOAA) traveled to the North Slope of Alaska. They brought along a plane just big enough for one (small) pilot.

Flying low, no higher than 50 meters above the ground, the plane collected data on four different greenhouse gases over about 310 square kilometers, an area 90 times larger than Central Park. Using the eddy-covariance technique--which measures vertical windspeed and the concentration of trace gases in the atmosphere--the team could determine whether more gas went up than down.

In this case, what goes up, does not always come down: Greenhouse gases rise into the atmosphere where they trap heat and warm the planet. And, nitrous oxide poses a second, special threat: Up in the stratosphere, sunlight and oxygen team up to convert the gas into nitrogen oxides, which eat at the ozone. According to the EPA, atmospheric levels of the gas are rising, and the molecules can stay in the atmosphere for up to 114 years.

In Alaska, Anderson's field team focused on carbon dioxide, methane, and water vapor (a natural greenhouse gas). But, their little plane picked up nitrous oxide levels, too.

When Wilkerson joined the lab in 2013, the nitrous oxide data was still raw, untouched. So, he asked if he could analyze the numbers as a side-project. Sure, Anderson said, go right ahead. Both of them expected the data to confirm what everyone already seemed to know: Nitrous oxide is not a credible threat from permafrost.

Wilkerson ran the calculations. He checked his data. He sent it to Ronald Dobosy, the paper's second author, an Atmospheric Scientist and eddy-covariance expert at the Oak Ridge Associated Universities (ORAU) at NOAA. "I was skeptical that anything would come of it," Dobosy says.

After triple checks, Wilkerson had to admit: "This is widespread, pretty high emissions." In just one month, the plane recorded enough nitrous oxide to fulfill the expected cap for an entire year.

Still, the study only collected data on emissions during August. And, even though their plane covered more ground than any previous study, the data represents just 310 of the 14.5 million square kilometers in the Arctic, like using a Rhode Island-sized plot to represent the entire United States.

Even so, a few recent studies corroborate Wilkerson's findings. Other researchers have used chambers--covered, pie plate-sized containers planted into tundra--to monitor gas emissions over months and even years.

Other studies extract cylindrical "cores" from the permafrost. Back in a lab, the researchers warm the cores inside a controlled environment and measure how much gas the peat releases. The more they heated the soil, the more nitrous oxide leaked out.

Both chambers and cores cover even less ground (no more than 50 square meters) than Anderson's airborne system. But together, all three point to the same conclusion: Permafrost is emitting far more nitrous oxide than previously expected. "It makes those findings quite a bit more serious," Wilkerson says.

Wilkerson hopes this new data will inspire further research. "We don't know how much more it's going to increase," he says, "and we didn't know it was significant at all until this study came out."

Right now, eddy-covariance towers--the same technology the Anderson crew used in their plane--monitor both carbon dioxide and methane emissions across the Arctic. Anderson was the first to use airborne eddy-covariance to collect data on the region's nitrous oxide levels. And, apart from the small-scale but significant chamber and core studies, no one is watching for the most potent greenhouse gas.

Since the Arctic is warming at almost twice the rate of the rest of the planet, the permafrost is predicted to thaw at an ever-increasing rate. These warm temperatures could also bring more vegetation to the region. Since plants eat nitrogen, they could help decrease future nitrous oxide levels. But, to understand how plants might mitigate the risk, researchers need more data on the risk itself.

In his place, Wilkerson hopes researchers hurry up and collect this data, whether by plane, tower, chamber, or core. Or better yet, all four. "This needs to be taken more seriously than it is right now," he says.

The permafrost may be stuck in a perpetual climate change cycle: As the planet warms, permafrost melts, warming the planet, melting the frost, and on and on. To figure out how to slow the cycle, we first need to know just how bad the situation is.
-end-


Harvard University

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...