Marine disease on the rise?

April 13, 2004

Humans can affect marine life in unexpected ways, as when large numbers of seals succumbed to canine distemper virus in 2000, presumably contracted from domestic dogs. Such human incursions cause even more damage by exacerbating the effects of naturally occurring parasitic and pathogenic diseases. While all indicators point to a real increase in disease in marine organisms, scientists have no baseline data to measure these increases against and so cannot directly test whether marine diseases are genuinely increasing. Now Jessica Ward and Kevin Lafferty report a new method in PLoS Biology that uses the recorded incidence of disease in the scientific literature to identify disease trends in major groups of marine organisms. Their analysis not only confirms fears but also throws up some unexpected results.

Ward and Lafferty conducted an online search of 5,900 journals published from 1970 to 2001 to measure the proportion of reports of disease in nine groups or marine organisms: turtles, corals, mammals, urchins, mollusks, seagrasses, decapods (crustaceans), sharks/rays, and fishes. Their approach also takes into account potential confounding factors, such as the effect of a particularly prolific author or a single disease event reported multiple times. They found a clear increase in disease in all groups except seagrasses, decapods, and sharks/rays. And they found that disease reports actually decreased for fishes. (One explanation for this decrease could be that drastic reductions in population density caused by overfishing present fewer opportunities for transmitting infection.)

These results confirm scientists' perceptions about the rising distress of threatened populations and thus reflects a real underlying pattern in nature. That disease did not increase in all taxonomic groups suggests that increases in disease are not simply the result of increased study and that certain stressors, such as global climate change, will impact disease in complex ways. Ward and Lafferty have created a powerful tool to help evaluate trends in disease in the absence of baseline data. It is only by understanding the dynamics of disease outbreaks that scientists can help develop sound methods to contain them.
-end-
citation: Ward JR, Lafferty KD (2004) The elusive baseline of marine disease: Are diseases in ocean ecosystems increasing? PLoS Biol 2(4):e120 DOI: 10.1371/journal.pbio.0020120

link: http://www.plosbiology.org/plosonline/?request=get-document&doi=10.1371/journal.pbio.0020120

PLEASE MENTION PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Jessica Ward
Cornell University
Ithaca, NY 14853
United States of America
607-254-4285
jrw37@cornell.edu

PLOS

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.