Decoding a sulfate-breathing bug

April 13, 2004

Rockville, MD - Paving the way for better methods to protect pipelines and remediate metallic pollutants, scientists have sequenced the genome of a sulfate-breathing bacterium that can damage oil and natural gas pipelines and corrode oilfield equipment.

The microbe, Desulfovibrio vulgaris, plays a role in a process called microbially-influenced corrosion (MIC), which has caused staggering economic losses in the petroleum industry and at other industrial sites around the world. Such corrosion is caused by bacteria acting together in a biofilm that covers metal pipelines or equipment.

The analysis of the microbe's genes is expected to help researchers find better ways to minimize such damage as well as to develop methods to use such microbes to help remediate metallic pollutants such as uranium and chromium.

Desulfovibrio is a model for the study of sulfate-reducing bacteria, which use hydrogen, organic acid, or alcohols as electron donors to "reduce" (that is, add electrons to) certain metals, including uranium. Other sequenced microbes that are capable of such reduction include Shewanella oneidensis and Geobacter sulfurreducens, both of which were sequenced at TIGR.

"This genome will be a valuable asset to the community of scientists around the world who are studying the sulfate-reducing bacteria and their role in corrosion," says John Heidelberg, the TIGR assistant investigator who led the sequencing project.

The study, to be published in the May 2004 issue of Nature Biotechnology and posted on the journal's website this week, was supported by the Microbial Genome Program of the U.S. Department of Energy's Office of Science.

In their analysis of the D. vulgaris genome, scientists found a network of c-type cytochromes - proteins which facilitate electron transfers and metal reduction during the organism's energy metabolism. The presence of those c-type cytochrome genes are thought to give D. vulgaris a significant capacity and flexibility to reduce metals.

The study also found that the relative arrangements of genes involved in energy transfer provides evidence that the microbe uses a process called hydrogen cycling to increase the efficiency of its energy metabolism.

"With the genome sequence, we have a frame in which our theories and data must function. We have yet to see the frame very clearly, but that is developing," says Judy D. Wall, a biochemist at the University of Missouri-Columbia who collaborated on the genome analysis.

Wall says that having the genome of D. vulgaris will help biochemists determine exactly how the microbe corrodes iron and perhaps develop better ways to prevent that damage. "Understanding how sulfate-reducing bacteria use substrates to make energy and how they position themselves in the environment fundamental to efforts to control the bacteria or use them for our purposes," she says. Gerrit Voordouw, a microbiologist at the University of Calgary in Canada and a collaborator on the project, is an expert on the organism. "Knowing the genomic sequence will allow detailed unraveling of the mechanism by which sulfate-reducing bacteria like D. vulgaris use metallic iron as electron donors," he says.

Voordouw adds that future microarray studies of D. vulgaris will make it possible to determine which of its genes are turned on or off when the microbe is growing on a metal surface and is involved in the corrosion process. "This knowledge is a prerequisite to devising more intelligent ways to prevent microbially induced corrosion."

In addition, the genome sequence - by defining genes of interest in the process of metal ion reduction and metal ion precipitation - is expected to help scientists find ways to use D. vulgaris or similar sulfate-reducing microbes to help clean up pollution by toxic metals near mines or similar sites.

Says Voordouw: "This is important to help combat the spread of toxic metal ions in the environment at mining sites."
The Institute for Genomic Research (TIGR) is a not-for-profit research institute based in Rockville, Maryland. TIGR, which sequenced the first complete genome of a free-living organism in 1995, has been at the forefront of the genomic revolution since the institute was founded in 1992. TIGR conducts research involving the structural, functional, and comparative analysis of genomes and gene products in viruses, bacteria, archaea, and eukaryotes.

TIGR Media Contact:
Robert Koenig, Publications and Public Affairs Manager

TIGR Scientific Contact:
John Heidelberg, Ph.D.

The Institute for Genomic Research

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to