Mechanism outlined by which inadequate vitamin E can cause brain damage

April 13, 2015

CORVALLIS, Ore. - Researchers at Oregon State University have discovered how vitamin E deficiency may cause neurological damage by interrupting a supply line of specific nutrients and robbing the brain of the "building blocks" it needs to maintain neuronal health.

The findings - in work done with zebrafish - were just published in the Journal of Lipid Research. The work was supported by the National Institutes of Health.

The research showed that zebrafish fed a diet deficient in vitamin E throughout their life had about 30 percent lower levels of DHA-PC, which is a part of the cellular membrane in every brain cell, or neuron. Other recent studies have also concluded that low levels of DHA-PC in the blood plasma of humans is a biomarker than can predict a higher risk of Alzheimer's disease.

Just as important, the new research studied the level of compounds called "lyso PLs," which are nutrients needed for getting DHA into the brain, and serve as building blocks that aid in membrane repair. It showed the lyso PLs are an average of 60 percent lower in fish with a vitamin E deficient diet.

The year-old zebrafish used in this study, and the deficient levels of vitamin E they were given, are equivalent to humans eating a low vitamin E diet for a lifetime. In the United States, 96 percent of adult women and 90 percent of men do not receive adequate levels of vitamin E in their diet.

DHA is a polyunsaturated fatty acid, or PUFA, increasingly recognized as one of the most important nutrients found in omega-3 fatty acids, such as those provided by fish oils and some other foods.

"This research showed that vitamin E is needed to prevent a dramatic loss of a critically important molecule in the brain, and helps explain why vitamin E is needed for brain health," said Maret Traber, the Helen P. Rumbel Professor for Micronutrient Research in the College of Public Health and Human Sciences at OSU and lead author on this research.

"Human brains are very enriched in DHA but they can't make it, they get it from the liver," said Traber, who also is a principal investigator in the Linus Pauling Institute at OSU. "The particular molecules that help carry it there are these lyso PLs, and the amount of those compounds is being greatly reduced when vitamin E intake is insufficient. This sets the stage for cellular membrane damage and neuronal death."

DHA is the needed nutrient, Traber said, but it's lyso PLs which help get it into the brain. It's the building block.

"You can't build a house without the necessary materials," Traber said. "In a sense, if vitamin E is inadequate, we're cutting by more than half the amount of materials with which we can build and maintain the brain."

Some other research, Traber said, has shown that the progression of Alzheimer's disease can be slowed by increased intake of vitamin E, including one study published last year in the Journal of the American Medical Association. But that disease is probably a reflection of years of neurological damage that has already been done, she said. The zebrafish diet used in this study was deficient in vitamin E for the whole life of the fish - as is vitamin E deficiency in some humans.

Vitamin E in human diets is most often provided by dietary oils, such as olive oil. But many of the highest levels are in foods not routinely considered dietary staples - almonds, sunflower seeds or avocados.

"There's increasingly clear evidence that vitamin E is associated with brain protection, and now we're starting to better understand some of the underlying mechanisms," Traber said.
-end-
The study this story is based on is available online: http://bit.ly/1DtAIyU

Oregon State University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.