Trap and neutralize: A new way to clean contaminated groundwater

April 13, 2016

A team of researchers from Washington University in St. Louis have helped discover a new chemical method to immobilize uranium in contaminated groundwater, which could lead to more precise and successful water remediation efforts at former nuclear sites.

Researchers in the lab of Daniel Giammar, the Walter E. Browne Professor of Environmental Engineering in the School of Engineering & Applied Science, ran a series of experiments in a laboratory setting using water containing uranium -- present in contaminated groundwater at various sites in the United States as a legacy of Cold War-era processing and waste disposal activities associated with nuclear materials production.

Calcium and phosphate work together chemically to immobilize uranium, which is shown to lead to increased cancer risk and liver damage in humans when ingested. Past field studies, including one at the Hanford Site in the state of Washington, focused on an in situ solution that injected phosphates directly into contaminated groundwater. Remediation efforts were not fully successful, because the scale of overlap for the calcium, uranium and phosphates was limited.

"A challenge with subsurface remediation is finding the right way to bring the necessary ingredients together in a poorly-mixed system," Giammar said. "In the field-scale test, much of the added phosphate never reached the uranium because it precipitated out near the injection well. The solution is to figure out scenarios where it is possible to send the phosphate to where the uranium is, and other scenarios where the phosphate can be added to a location where the natural groundwater flow will bring the uranium into contact with it."

The research was led by Giammar and Vrajesh S. Mehta, who earned his PhD at the School of Engineering & Applied Science. Other co-authors are Zheming Wang, senior researcher at the Environmental Molecular Science Laboratory in Richland, Wash.; Jeffrey G. Catalano, associate professor of earth and planetary sciences in Arts & Sciences at Washington University; and Fabien Maillot, former postdoctoral researcher in Catalano's lab.

In three different types of experiments conducted in Giammar's lab, the researchers first determined the exact level of calcium in the water. They were then able to add specific amounts of phosphate that formed calcium phosphate, chemically neutralizing and structurally incorporating the uranium. The exact combination of calcium and added phosphate rendered the uranium inert and trapped it in the groundwater.

Giammar's lab will continue this research, with the goal of developing a technique to tailor the location of phosphate injection that would be used in conjunction with the groundwater's existing calcium to remediate the uranium also present.

"The results of this work suggest that there will not be a one-size-fits-all approach to using phosphate to remediate uranium-contaminated groundwater," Giammar said. "With knowledge of the location of the uranium contamination and the composition of the groundwater, we can decide whether to inject phosphate directly into a plume of uranium-contaminated groundwater or to inject phosphate downstream of the uranium to form a calcium phosphate barrier."

The research findings were recently published in the journal Environmental Science & Technology.
-end-
The School of Engineering & Applied Science focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 88 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Washington University in St. Louis

Related Groundwater Articles from Brightsurf:

Majority of groundwater stores resilient to climate change
Fewer of the world's large aquifers are depleting than previously estimated, according to a new study by the University of Sussex and UCL.

Monitoring groundwater changes more precisely
A new method could help to track groundwater changes better than before.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

Shrub encroachment on grasslands can increase groundwater recharge
A new study led by Adam Schreiner-McGraw, a postdoctoral hydrology researcher at the University of California, Riverside, modeled shrub encroachment on a sloping landscape and reached a startling conclusion: Shrub encroachment on slopes can increase the amount of water that goes into groundwater storage.

River-groundwater hot spot for arsenic
Naturally occurring groundwater arsenic contamination is a problem of global significance, particularly in South and Southeast Asian aquifers.

Groundwater, a threatened resource requiring sustainable management
The WEARE group at the University of Cordoba analyzed a case of aquifer recovery and concluded that supervision, governance and use of water for high value crops are some of the keys to guaranteeing sustainability of these reserves

Co-occurring contaminants may increase NC groundwater risks
Eighty-four percent of the wells sampled in the Kings Mountain Belt and the Charlotte and Milton Belts of the Piedmont region of North Carolina contained concentrations of vanadium and hexavalent chromium that exceeded health recommendations from the North Carolina Department of Health and Human Services.

Fresh groundwater flow important for coastal ecosystems
Groundwater is the largest source of freshwater, one of the world's most precious natural resources and vital for crops and drinking water.

Natural contaminant threat to drinking water from groundwater
Climate change and urbanisation are set to threaten groundwater drinking water quality, new research from UNSW Sydney shows.

Switching to solar and wind will reduce groundwater use
IIASA researchers explored optimal pathways for managing groundwater and hydropower trade-offs for different water availability conditions as solar and wind energy start to play a more prominent role in the state of California.

Read More: Groundwater News and Groundwater Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.