Nav: Home

Shedding light on the absorption of light by titanium dioxide

April 13, 2017

Titanium dioxide (TiO2) is one of the most promising materials for photovoltaics and photocatalysis nowadays. This material appears in different crystalline forms, but the most attractive one for applications is called "anatase". Despite decades of studies on the conversion of the absorbed light into electrical charges in anatase TiO2, the very nature of its fundamental electronic and optical properties was still unknown. EPFL scientists, with national and international partners, have now shed light onto the problem by a combination of cutting-edge steady-state and ultrafast spectroscopic techniques, as well as theoretical calculations. The work is published in Nature Communications.

Anatase TiO2 is involved in a wide range of applications, ranging from photovoltaics and photocatalysis to self-cleaning glasses, and water and air purification. All of these are based on the absorption of light and its subsequent conversion into electrical charges. Given its widespread use in various applications, TiO2 has been one of the most studied materials in the twentieth century, both experimentally and theoretically.

When light shines on a semiconducting material such as TiO2, it generates either free negative (electrons) and positive (holes) charges or a bound neutral electron-hole pair, called an exciton. Excitons are of great interest because they can transport both energy and charges on a nanoscale level, and form the basis of an entire field of next-generation electronics, called "excitonics". The problem with TiO2 so far is that we have not been able to clearly identify the nature and properties of the physical object that absorbs light and characterize its properties.

The group of Majed Chergui at EPFL, along with national and international colleagues, have shed light on this long-standing question by using a combination of cutting-edge experimental methods: steady-state angle-resolved photoemission spectroscopy (ARPES), which maps the energetics of the electrons along the different axis in the solid; spectroscopic ellipsometry, which determines the optical properties of the solid with high accuracy; and ultrafast two-dimensional deep-ultraviolet spectroscopy, used for the first time in the study of materials, along with state-of-the-art first-principles theoretical tools.

They discovered that the threshold of the optical absorption spectrum is due to a strongly bound exciton, which exhibits two remarkable novel properties: First, it is confined on a two-dimensional (2D) plane of the three-dimensional lattice of the material. This is the first such case ever reported in condensed matter. And secondly, this 2D exciton is stable at room temperature and robust against defects, as it is present in any type of TiO2 -- single crystals, thin films, and even nanoparticles used in devices.

This "immunity" of the exciton to long-range structural disorder and defects implies that it can store the incoming energy in the form of light and guide it at the nanoscale in a selective way. This promises a huge improvement compared to current technology, in which the absorbed light energy is dissipated as heat to the crystal lattice, making the conventional excitation schemes extremely inefficient.

Furthermore, the newly discovered exciton is very sensitive to a variety of external and internal stimuli in the material (temperature, pressure, excess electron density), paving the way to a powerful, accurate and cheap detection scheme for sensors with an optical read-out.

"Given that it is cheap and easy to fabricate anatase TiO2 materials, these findings are crucial for many applications and beyond", says Majed Chergui. "To know how electrical charges are generated after light is absorbed is a key ingredient for efficient photocatalysts."
This work was carried out in a collaboration of the EPFL's Laboratoire de Spectroscopie Ultrarapide (LSU) and the Institute of Physics (IPHYS) within the Lausanne Centre for Ultrafast Science (LACUS), with the Max Planck Institute for the Structure and Dynamics of Matter, the University of Fribourg, the Università Campus Bio-Medico di Roma, the Università Roma "Tor Vergata", and the Universidad del Pais Vasco. It was funded by the Swiss National Science foundation (SNSF; NCCR:MUST), the European Research Council Advanced Grants "DYNAMOX" and "Qspec-Newmat", the Grupos Consolidados del Gobierno Vasco and COST Actions, EUSpec.


E. Baldini, L. Chiodo, A. Dominguez, M. Palummo, S. Moser, M. Yazdi-Rizi, G. Auböck, B.P.P. Mallett, H. Berger, A. Magrez, C. Bernhard, M. Grioni, A. Rubio, M. Chergui. Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nature Communications 13 April 2017. DOI: s41467-017-00016-6.

Ecole Polytechnique Fédérale de Lausanne

Related Energy Articles:

Wave energy researchers dive deep to advance clean energy source
One of the biggest untapped clean energy sources on the planet -- wave energy -- could one day power millions of homes across the US.
A new energy source within the cells
Scientists at the Centre for Genomic Regulation in Barcelona, Spain, find evidence of a new energy source within cell nucleus.
MIT Energy Initiative welcomes Exelon as member for clean energy research
MIT Energy Initiative announces that national energy provider Exelon joins MITEI as a member to focus research support through MITEI's Low-Carbon Energy Centers.
Clean energy from water
Fuel cells generate electrical energy through a chemical reaction of hydrogen and oxygen.
Determinant factors for energy consumption and perception of energy conservation clarified
Change in lifestyle is a key component to realizing a low-carbon society.
Lactate for brain energy
Nerve cells cover their high energy demand with glucose and lactate.
Evidence shows low energy sweeteners help reduce energy intake and body weight
Use of low energy sweeteners (LES) in place of sugar, in children and adults, leads to reduced calorie intake and body weight - and possibly also when comparing LES beverages to water -- according to a review led by researchers at the University of Bristol published in the International Journal of Obesity today.
ASU professor honored for work on energy and social aspects of energy policy
Martin 'Mike' Pasqualetti, an Arizona State University professor and an expert on energy and social components of energy development, will be awarded 2015 Alexander and Ilse Melamid Memorial Medal by the American Geographical Society.
Stanford's Global Climate and Energy Project awards $9.3 million for energy research
GCEP has awarded scientists at Stanford and four other universities funding to develop a suite of promising energy technologies.
Energy efficiency upgrades ease strain of high energy bills in low-income families
Low-income families bear the brunt of high-energy costs and poor thermal comfort from poorly maintained apartment buildings.

Related Energy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.