Nav: Home

Scientists discover master switch to turn on silent biosynthetic gene clusters

April 13, 2017

Bacteria have supplied some of today's most indispensable anti-cancer and anti-bacterial drugs. Yet these compounds comprise only a fraction of their possible offerings. Now, researchers have found a way to unleash their full potential as natural product dispensers.

Natural products are generated by portions of the bacterial genome called biosynthetic gene clusters. The majority of these clusters are silent, meaning they don't make any compounds, but they represent intriguing targets to activate and mine for possible new drugs. While previous efforts focused on individual clusters, scientists at Princeton University have discovered a global regulator in the model bacterium Burkholderia thailandensis that 'switches on' lots of silent clusters at once.

"Natural product regulation and ecological function usually take a backseat to application," said Mohammad Seyedsayamdost, a Princeton assistant professor of chemistry and corresponding author on the study published in the Proceedings of the National Academies of Sciences. "We use penicillin as an antibiotic but we really don't know why microbes make it."

Studying the regulation of natural product biosynthesis, the team found that a LysR-type transcriptional regulator called scmR acts as a global gatekeeper for expression of gene clusters. They demonstrated the regulator's powers of suppression by deleting it from the bacterium's genome and observed a surge in the release of new products by 13 out of 20 of B. thailandensis' biosynthetic gene clusters.

One of the silent gene clusters that was switched gave rise to malleilactone, a compound that has been reported to be toxic to worms. To test the potency of these anti-parasitic compounds and the ability of the scmR-deleted mutant to overproduce it, graduate student Dainan Mao co-incubated live worms and the scmR mutant on agar plates. Mao, the lead author on the study, was surprised at the levels and potency of the released compounds, killing the worms within 30 minutes of exposure. "The worms were dying almost faster than I could pick and count them," she said.

The team not only uncovered the global regulator that silences biosynthetic gene clusters but also the pathways it interacts with to do so. They found that the regulator's suppressing abilities were activated by quorum sensing, which had never before been seen. It meant that the more cells that are present the more the gene clusters are silenced.

The researchers found evidence that the regulator was also involved in other quorum sensing processes including virulence and biofilm formation. Though further investigation is needed, Seyedsayamdost said, the regulator, which is widespread in Burkholderia, could be a promising target in human pathogens to abolish their ability to turn on virulence pathways.

To expand on their findings, the team proposes to develop a screen to detect other regulators that have a global effect on a bacterium's ability to make natural products and that could be eliminated genetically to release molecules of interest. "Knocking out these suppressors could be a really attractive strategy in the future," he said.
Read the full article here:

Mao, D.; Bushin, L. B., Moon, K., Wu, Y., Seyedsayamdost, M. R. "Discovery of scmR as a global regulator of secondary metabolism and virulence in Burkholderia thailandensis E264." Proc. Natl. Acad. Sci. 2017 114, E2920. This work was supported by the Searle Scholar Program and the Princeton Intellectual Property Accelerator Fund.

Princeton University

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...