Nav: Home

Scientists discover master switch to turn on silent biosynthetic gene clusters

April 13, 2017

Bacteria have supplied some of today's most indispensable anti-cancer and anti-bacterial drugs. Yet these compounds comprise only a fraction of their possible offerings. Now, researchers have found a way to unleash their full potential as natural product dispensers.

Natural products are generated by portions of the bacterial genome called biosynthetic gene clusters. The majority of these clusters are silent, meaning they don't make any compounds, but they represent intriguing targets to activate and mine for possible new drugs. While previous efforts focused on individual clusters, scientists at Princeton University have discovered a global regulator in the model bacterium Burkholderia thailandensis that 'switches on' lots of silent clusters at once.

"Natural product regulation and ecological function usually take a backseat to application," said Mohammad Seyedsayamdost, a Princeton assistant professor of chemistry and corresponding author on the study published in the Proceedings of the National Academies of Sciences. "We use penicillin as an antibiotic but we really don't know why microbes make it."

Studying the regulation of natural product biosynthesis, the team found that a LysR-type transcriptional regulator called scmR acts as a global gatekeeper for expression of gene clusters. They demonstrated the regulator's powers of suppression by deleting it from the bacterium's genome and observed a surge in the release of new products by 13 out of 20 of B. thailandensis' biosynthetic gene clusters.

One of the silent gene clusters that was switched gave rise to malleilactone, a compound that has been reported to be toxic to worms. To test the potency of these anti-parasitic compounds and the ability of the scmR-deleted mutant to overproduce it, graduate student Dainan Mao co-incubated live worms and the scmR mutant on agar plates. Mao, the lead author on the study, was surprised at the levels and potency of the released compounds, killing the worms within 30 minutes of exposure. "The worms were dying almost faster than I could pick and count them," she said.

The team not only uncovered the global regulator that silences biosynthetic gene clusters but also the pathways it interacts with to do so. They found that the regulator's suppressing abilities were activated by quorum sensing, which had never before been seen. It meant that the more cells that are present the more the gene clusters are silenced.

The researchers found evidence that the regulator was also involved in other quorum sensing processes including virulence and biofilm formation. Though further investigation is needed, Seyedsayamdost said, the regulator, which is widespread in Burkholderia, could be a promising target in human pathogens to abolish their ability to turn on virulence pathways.

To expand on their findings, the team proposes to develop a screen to detect other regulators that have a global effect on a bacterium's ability to make natural products and that could be eliminated genetically to release molecules of interest. "Knocking out these suppressors could be a really attractive strategy in the future," he said.
-end-
Read the full article here:

Mao, D.; Bushin, L. B., Moon, K., Wu, Y., Seyedsayamdost, M. R. "Discovery of scmR as a global regulator of secondary metabolism and virulence in Burkholderia thailandensis E264." Proc. Natl. Acad. Sci. 2017 114, E2920. This work was supported by the Searle Scholar Program and the Princeton Intellectual Property Accelerator Fund.

Princeton University

Related Genome Articles:

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
Decoding the Axolotl genome
The sequencing of the largest genome to date lays the foundation for novel insights into tissue regeneration.
The Down's syndrome 'super genome'
Only 20 percent of foetuses with trisomy 21 reach full term.
More Genome News and Genome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab