Nav: Home

Are tumor cells glutamine addicts?

April 13, 2017

Heidelberg, 13 April 2017 ? Most cancers require large amounts of glutamine for rapid growth and there are numerous studies indicating that they cannot survive without it, a phenomenon termed "glutamine addiction". This has fueled the idea that preventing tumors from glutamine uptake could be a potential therapeutic strategy. A study by researchers from Berlin and Würzburg, Germany, now concludes that while glutamine deprivation will halt the proliferation of certain tumor cells, most of them will not be killed, raising questions of whether such a therapeutic intervention will lead to remission in cancers. The study is published today in The EMBO Journal.

Glutamine addiction has often been studied in cell culture systems that are genetically altered to overproduce c-MYC, a central regulator of growth and proliferation in all cells that is frequently de-regulated in cancers. Glutamine deprivation in these systems has been shown to be lethal to the cells - but does this also apply to naturally occurring tumors? To address this question, the research teams from Berlin and Würzburg took a closer look at human colon carcinoma cell lines that innately show high levels of c-MYC. They found that these carcinoma cells do not die when glutamine is deprived, but rather enter a reversible state of proliferation arrest.

Moreover, the researchers discovered that cell culture systems that express excess c-MYC and naturally occurring colon carcinoma cells differ in the way c-MYC production is regulated. In the cell culture systems, c-MYC protein will always be at a high level. In contrast, c-MYC-levels in colon carcinoma cells are down-regulated upon glutamine deprivation. This suggested that c-MYC may be involved in killing the cells upon glutamine deprivation. The researchers thus investigated the exact role of c-MYC and how it is regulated by glutamine.

Glutamine is used in many cellular pathways, including for the making of nucleotides, the building blocks of DNA and RNA. When glutamine is low, the level of nucleotides will drop. The researchers found that this, in turn, causes c-MYC levels to fall as well.

A key function of c-MYC is to regulate the transcription of numerous genes. Thus, when nucleotide levels are low and c-MYC concentration drops, transcription will be down-regulated as well. "Our results indicate that c-MYC couples transcription to nucleotide availability," said Stefan Kempa of the Max-Delbrück-Center for Molecular Medicine in Berlin, one of the lead investigators of the study. "It makes perfect sense for the cell to have such a mechanism and not even try to produce RNA when its building blocks are lacking."

However, this coupling does not exist in cell culture models with exogenously expressed c-MYC - the type of systems that are mainly used to investigate glutamine addiction in cancer. In these cells, the transcription machinery will keep running upon glutamine deprivation, despite the fact that there are too few nucleotides. This can lead to errors; newly emerging transcripts will get tangled up, forming loops that are lethal to the cell. "The fact that glutamine addiction has mainly been investigated in cell culture systems may have overestimated the lethality of glutamine deprivation," said Martin Eilers, University of Würzburg, who led the study together with Kempa.

The 3'-UTR of MYC couples RNA polymerase II function to ribonucleotide levels
-end-
Francesca R. Dejure, Nadine Royla, Steffi Herold, Jacqueline Kalb, Susanne Walz, Carsten P. Ade, Guido Mastrobuoni, Jens Vanselow, Andreas Schlosser, Elmar Wolf, Stefan Kempa and Martin Eilers.

Read the paper: http://emboj.embopress.org/cgi/doi/10.15252/embj.201796662

EMBO

Related Tumor Cells Articles:

Engineered T cells may be harnessed to kill solid tumor cells
A new Tel Aviv University study finds that a form of immunotherapy used to treat the blood cancer leukemia may be effective in treating other kinds of cancer as well.
Neurons promote growth of brain tumor cells
In a current paper published in the journal 'Nature', Heidelberg-based researchers and physicians describe how neurons in the brain establish contact with aggressive glioblastomas and thus promote tumor growth / New tumor activation mechanism provides starting points for clinical trials.
Scientists develop technology to capture tumor cells
Instead of searching for a needle in a haystack, what if you were able to sweep the entire haystack to one side, leaving only the needle behind?
Tumor cells' drug addiction may be their downfall
Work by researchers at the Babraham Institute in partnership with the global biopharmaceutical company AstraZeneca shows how cancer cells' acquired resistance to anti-cancer drugs proves fatal once the treatment compound is withdrawn.
The fluid that feeds tumor cells
MIT biologists have found that the nutrient composition of the interstitial fluid that normally surrounds pancreatic tumors is different from that of the culture medium normally used to grow cancer cells.
More Tumor Cells News and Tumor Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...