Nav: Home

Unveiling how nucleosome repositioning occurs to shed light on genetic diseases

April 13, 2017

Tokyo, April 14 - A research group led by Hitoshi Kurumizaka, a professor of structural biology at Waseda University, unveiled the crystal structure of an overlapping dinucleosome, a newly discovered chromatin structural unit. This may explain how nucleosome repositioning occurs and provide valuable information for developing drugs to treat genetic diseases.

This research is published in Science.

Humans develop from a single cell, which divides repeatedly to form organisms. These divided cells all carry the same genetic information and differentiate to form tissues with different functions. When a hand is formed, for example, only the genes needed to form a hand are "switched on," and all the other genes other than those used to form a hand remain switched off. Epigenetics is the field of research that aims to explain this so-called genetic switch, which controls the expression of genes that compose the structure of each organism.

A DNA string stores all of a person's genetic information and measures 2 meters long. This long of DNA must be packed in a nucleus of only about 10 micrometers in diameter. To do so, the DNA is folded neatly into a structure called chromatin. To decipher the genetic information in this condition, the chromatin structure is dynamically modified for reading. This change in chromatin structure regulates the differences in genes being read and differentiate phenotypic variations of cells.

A chromatin is composed of four histone proteins with DNA wrapped around a chain of spools known as nucleosomes. When reading genetic information, a chromatin structure is modified, so that the DNA packed into the chromatin becomes easier to read by repositioning the nucleosome near the point where the reading starts. Then, an RNA polymerase, an enzyme that transcribes the genes, starts reading the DNA from where the nucleosome was moved. This phenomenon of repositioning is called nucleosome remodeling. It was hypothesized that in nucleosome remodeling, nucleosomes collide and form a chromatin structural unit known as an overlapping dinucleosome (Figure 01). The formation of an overlapping dinucleosome through nucleosome remodeling was thought to be crucial for regulating the genetic switch, but its existence and actual structure were elusive.

Professor Kurumizaka's research group determined the three-dimensional structure of an overlapping dinucleosome at atomic resolution.

"Our team developed a method to reconstitute overlapping dinucleosomes in vitro and to prepare them in large quantities with high purity. We succeeded in crystallizing the purified overlapping dinucleosomes (Figure 02), and using these, we conducted x-ray diffraction experiments at SPring-8, a large-scale synchrotron radiation facility."

These discoveries are promising for expanding research on the link between the overlapping dinucleosome and the genetic switch.

Moreover, mutations in nucleosome remodeling proteins have been found in various cancers, including ovarian and bladder cancers. This suggests that an incomplete formation of overlapping dinucleosome may trigger abnormalities in the genetic switch, turning normal cells into tumor cells. Accordingly, understanding the atomic structure of the overlapping dinucleosome may provide valuable information for understanding how the abnormal dynamics of chromatin are related to cancer, offering essential information for development in cancer drugs.

Professor Kurumizaka is intrigued to study the correlation between the overlapping dinucleosome formation and the genomic DNA functions in cells in the future.
-end-
Article title: Crystal structure of the overlapping dinucleosome composed of hexasome and octasome

* This was a collaborative study led by Professor Hitoshi Kurumizaka of Waseda University, in collaboration with researchers from Hiroshima University, Yokohama City University, Kyushu University, the National Institutes for Quantum and Radiological Science and Technology, and Kyoto University.

About Waseda University

Waseda University is a leading private, non-profit institution of higher education based in central Tokyo, with over 50,000 students in 13 undergraduate and 21 graduate schools. Founded in 1882, Waseda cherishes three guiding principles: academic independence, practical innovation and the education of enlightened citizens. Established to mold future leaders, Waseda continues to fulfill this mission, counting among its alumni seven prime ministers and countless other politicians, business leaders, journalists, diplomats, scholars, scientists, actors, writers, athletes and artists.

Waseda is number one in Japan in international activities, including number of incoming and outgoing study abroad students, with the broadest range of degree programs taught fully in English, and exchange partnerships with over 600 top institutions in 84 countries.

Waseda University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...