Nav: Home

Kent State University at Stark research unravels mysteries of mouthparts of butterflies

April 13, 2017

Imagine that the way flies and butterflies drink nectar and other fluids can be imitated for use in medicine, potentially to deliver life-saving drugs to the body -- and also how this method can save their own lives in times of drought.

This is the kind of critical research being done every day by faculty and students at Kent State University at Stark.

A study by Matthew Lehnert, Ph.D., assistant professor of biological sciences at Kent State Stark, shows that the method in which flies and butterflies ingest liquids into their own bodies for nourishment may be used as a model for delivering disease-fighting drugs to the human body. Drug delivery systems are engineered technologies for the targeted delivery and/or controlled release of therapeutic agents. They control the rate at which a drug is released and the location in the body where it is released.

In addition to enhanced drug delivery methods, by copying their feeding systems, scientists and engineers could manufacture small probes that can sample fluid inside of cells for use by doctors or other clinicians to make diagnoses.

Butterflies and flies have mouthparts that have a channel for fluids to travel from the liquid source to the head for ingestion, Lehnert said. This study also found that there is a limiting pore size from which each individual can feed -- butterflies and flies with smaller mouthpart channels will be able to feed on liquids from smaller pores, which might have an advantage for the insects and more broadly for the ecosystem in case of a drought.

Lehnert, three of his Kent State Stark undergraduate student assistants and four other researchers found that flies, butterflies and moths (20 percent of all animals) use capillary action, or the movement of liquids seamlessly from one place to another, as the guiding principle when feeding on liquid films -- their primary source of food. An insect's proboscis, a body part that allows them to drink liquids, acts like a highly-sophisticated sponge and straw that uses capillary action to send nectar or other liquids to the insect's diges tive system.

Their findings were published recently in Proceedings of the Royal Society B: Biological Sciences, one of the world's top science journals.

In order to feed on nectar and other liquid films, natural selection has favored the evolution of specialized mouthparts in fluid-feeding insects. In butterflies and flies, the mouthparts consist of a proboscis adapted for using capillary action to pull thin films of fluid from surfaces for subsequent feeding. Usually, the proboscis of flies and butterflies is held close to the underside of the head when not in use and when the insect is searching for food.

The team's findings show that capillary action is an essential and ideal method for removing small amounts of fluids from surfaces, Lehnert said. By copying this natural method, scientists say the mouthparts of flies and butterflies can serve as models for developing new devices for improved drug delivery systems.

"It was previously known that flies and butterflies independently evolved mouthparts adapted for feeding on fluids, but what was unknown before our study was that they both use the same principles for ingesting fluids - capillary action," Lehnert said. "Our findings have applications to the production of novel microfluidic devices that can be developed to mimic the functionality of insect mouthparts, which have the advantage of being impacted by natural selection over millions of years."
-end-
Joining Lehnert on the research team were Kent State Stark undergraduates Andrew Bennett, Kristen E. Reiter and Miranda Byler; Qi-Huo Wei and Huan Yan of Kent State University's Liquid Crystal Institute; Patrick D. Gerard of Clemson University's Department of Mathematical Sciences; and Wah-Keat Lee of the Brookhaven National Laboratory.

Funding support came from a three-year, $626,000 National Science Foundation grant.

Kent State University

Related Butterflies Articles:

UC biologist looks at butterflies to help solve human infertility
UC biologist helps decode the structural complexities of male butterfly ejaculate and co-evolving female reproductive tract.
1976 drought revealed as worst on record for British butterflies and moths
Scientists at the University of York have revealed that the 1976 drought is the worst extreme event to affect butterflies and moths in the 50 years since detailed records began.
Study reveals how pesticide use and climate affect monarch butterflies
An analysis of data in Illinois has found a link between higher county-level use of an herbicide called glyphosate and reduced abundance of adult monarch butterflies, especially in areas with concentrated agriculture.
Gehry's Biodiversity Museum -- favorite attraction for the butterflies and moths in Panama
Ahead of Gehry's Biodiversity Museum's opening in October 2014, Ph.D.
Female promiscuity in butterflies controls paternity
The eggs of some butterfly and moth species vary to give females control over the paternity of their offspring, according to new research published today.
Movement of rainforest butterflies restricted by oil palm plantations
Scientists at the University of York have found that oil palm plantations, which produce oil for commercial use in cooking, food products, and cosmetics, may act as a barrier to the movement of butterflies across tropical landscapes.
Butterflies: Agonistic display or courtship behavior?
A study shows that contests of butterflies occur only as erroneous courtships between sexually active males that are unable to distinguish the sex of the other butterflies.
Urbanization affects diets of butterflies: NUS study
A study led by researchers from the National University of Singapore revealed that most tropical butterflies feed on a variety of flower types, but those that are 'picky' about their flower diets tend to prefer native plants and are more dependent on forests.
Butterflies use differences in leaf shape to distinguish between plants
The preference of Heliconius butterflies for certain leaf shapes is innate, but can be reversed through learning.
Butterflies' diet impacts evolution of traits
A new study led by University of Minnesota researcher Emilie Snell-Rood finds that access to some nutrients may be a star player in shaping traits related to fitness such as fecundity and eye size over the long term.

Related Butterflies Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...