Nav: Home

Unexpected properties uncovered in recently discovered superconductor

April 13, 2019

Tokyo, Japan - Researchers from Tokyo Metropolitan University have found that crystals of a recently discovered superconducting material, a layered bismuth chalcogenide with a four-fold symmetric structure, shows only two-fold symmetry in its superconductivity. The origin of superconductivity in these structures is not yet well understood; this finding suggests a connection with an enigmatic class of materials known as nematic superconductors and the extraordinary mechanisms by which superconductivity can emerge at easier-to-reach temperatures.

Superconductors are materials with extremely low electrical resistance. They have already seen numerous applications to powerful electromagnets, particularly in medical magnetic resonance imaging (MRI) units, where they are used to generate the strong magnetic fields required for high resolution non-invasive imaging. However, significant barriers exist which prevent more widespread usage e.g. for power transmission over long distances. The most notable is that conventional superconductivity only arises at extremely low temperatures. The first "high-temperature" superconductors were only found in the latter half of the 1980s, and the mechanisms behind how they work are still hotly debated.

In 2012, Prof Yoshikazu Mizuguchi of Tokyo Metropolitan University succeeded in engineering layered bismuth chalcogenide materials with alternating insulating and superconducting layers for the first time. (Chalcogenides are materials containing elements from group 16 of the periodic table.) Now, the same team have taken measurements on single crystals of the material and found that the rotational symmetry characteristics of the crystalline structure are not replicated in how the superconductivity changes with orientation.

The material the group studied consisted of superconducting layers made of bismuth, sulfur and selenium, and insulating layers made of lanthanum, fluorine and oxygen. Importantly, the chalcogenide layers had four-fold rotational (or tetragonal) symmetry i.e. the same when rotated by 90 degrees. However, when the team measured the magnetoresistance of the material at different orientations, they only found two-fold symmetry i.e. the same when rotated by 180 degrees. Further analyses at different temperatures did not suggest any changes to the structure; they concluded that this breakage of symmetry must arise from the arrangement of the electrons in the layer.

The concept of nematic phases comes from liquid crystals, where disordered, amorphous arrays of rod-like particles can point in the same direction, breaking rotational symmetry while remaining randomly distributed over space. Very recently, it has been hypothesized that something similar in the electronic structure of materials, electronic nematicity, may be behind the emergence of superconductivity in high temperature superconductors. This finding clearly links this highly customizable system to high temperature superconductors like copper and iron-based materials. The team hope that further investigation will reveal critical insights into how otherwise widely different materials give rise to similar behavior, and how they work.
-end-
This work was partly supported by Collaborative Research with IMR, Tohoku Univ. (proposal number: 17H0074) and Grants-in-Aid for Scientific Research (Nos. 15H05886, 16H04493, 17K19058).

Tokyo Metropolitan University

Related Superconductivity Articles:

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Superconductivity is heating up
Theory suggests that metallic hydrogen should be a superconductor at room temperature; however, this material has yet to be produced in the lab.
Light pulses provide a new route to enhance superconductivity
Scientists have shown that pulses of light could be used to turn materials into superconductors through an unconventional type of superconductivity known as 'eta pairing.'
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
New quantum criticality discovered in superconductivity
Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S.
More Superconductivity News and Superconductivity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.