Why do so many pregnancies and in vitro fertilization attempts fail?

April 13, 2020

Scientists have created a mathematical model that can help explain why so many pregnancies and in vitro fertilization attempts fail.

The Rutgers-led study, which may help to improve fertility, is published in the journal .

Mistakes in female meiosis, the cell division process that creates egg cells, result in eggs with an abnormal number of chromosomes (too many or too few). This phenomenon is strongly associated with the repeated loss of pregnancies and the failure of in vitro fertilization (IVF) procedures, as well as developmental disorders such as Down syndrome.

"Our study demonstrates that in the future, mathematical models can be powerful tools for predicting the outcomes of in vitro fertilization for infertility patients and/or provide the basis for considering alternative family planning options, such as adoption," said senior author

"Modeling efforts such as ours can provide guidelines on, for instance, how many eggs must be collected during a single IVF cycle to ensure there will be at least one chromosomally normal conception," said co-author

Pregnancy loss is extremely common, with nearly 20 percent of clinically recognized pregnancies resulting in miscarriage, and many more unrecognized pregnancies end earlier, the study notes.

A leading cause of early miscarriage is called aneuploidy, when eggs have the wrong number of chromosomes, and it's also the main cause of IVF failure. The vast majority of eggs with chromosome problems are linked to errors in female cell division that increase as women age. Understanding how that happens is crucial because the average age at conception is rising in developed countries.

"Such basic knowledge is required to pave the way for future diagnostic and therapeutic innovations to improve human fertility," the study says.

The scientists developed a mathematical model describing all possible abnormal chromosome count issues in eggs due to cell division errors. Using data on 11,157 early stage human embryos (blastocysts), the model revealed previously unknown patterns of errors.

The model can be used to identify IVF patients who produce an extreme number of abnormal embryos. It's also a powerful tool for understanding why abnormal numbers of chromosomes arise when cells divide and for predicting the outcomes of IVF reproduction. The model potentially could provide guidance for clinicians on the expected number of IVF cycles needed to get a normal conception for each patient. The modeling framework can also be expanded and adapted to address other processes, such as predicting errors in sperm.
-end-
The lead author is Katarzyna M. Tyc, a former Rutgers post-doctoral associate now at Virginia Commonwealth University. A scientist at Johns Hopkins University contributed to the study.

Rutgers University

Related Mathematical Model Articles from Brightsurf:

A mathematical model facilitates inventory management in the food supply chain
A research study in the Diverfarming project integrates transport resources and inventory management in a model that seeks economic efficiency and to avoid shortages

Mathematical modelling to prevent fistulas
It is better to invest in measures that make it easier for women to visit a doctor during pregnancy than measures to repair birth injuries.

Predicting heat death in species more reliable with new mathematical model
An international research with the involvement of the Universitat Autònoma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks
Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Moffitt mathematical model predicts patient outcomes to adaptive therapy
In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics
As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes
MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution
Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.

Read More: Mathematical Model News and Mathematical Model Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.