Precipitation will be essential for plants to counteract global warming

April 13, 2020

New York, NY--April 13, 2020--Photosynthesis on Earth is regulated by plant phenology--how plant life cycles interact with the climate--and environmental conditions, both of which changed substantially in recent decades. Unlike early-season photosynthesis which is mostly driven by warming temperatures or the onset of the wet season, late-season photosynthesis can be limited by several factors, such as plant life cycle and radiation, and its underlying mechanisms are less understood. Late-season photosynthesis on land contributes greatly to annual total carbon fixation and is sensitive to climate. Scientists generally agree that temperature limitation on late-season photosynthesis will alleviate with warming but the effects of water availability are highly uncertain.

A new Columbia Engineering study shows that increased water stress--higher frequency of drought due to higher temperatures, is going to constrain the phenological cycle: in effect, by shutting down photosynthesis, it will generate a lower carbon uptake at the end of the season, thus contributing to increased global warming. The researchers used both remote sensing data and in-situ observations to analyze the temperature and water limitations on the end of photosynthesis date. They found that water limitation on late-season photosynthesis is regulated by both soil water and mean annual temperature. Earth system models have predicted warming and soil drying over most of the land surface by, and so it is clear that water availability will become increasingly important as a limiting factor for late-season photosynthesis and carbon uptake.

"We wanted to understand what the driving factor of plant photosynthesis is during the late growing season, and how it will change in the future," says Pierre Gentine, associate professor of earth and environmental engineering and affiliated with the Earth Institute, who led the study published today in Proceedings of National Academy of Sciences. "Our study is a very good example of how advances in remote sensing technologies can be used to solve long-lasting questions like this one."

The team used both machine learning and remote sensing to generate a new dataset for mapping global plant photosynthesis. They found a contrasting spatial pattern of temperature and water limitations on photosynthesis at the end of the growing season. The threshold separating these was determined by the balance between energy availability and soil water supply. Precipitation and temperature had important yet opposite impacts on the end of the growing season photosynthesis for ecosystems at different locations: if plant photosynthesis in some areas is limited by precipitation (positive relationship with precipitation), temperature is likely to have a negative effect, and vice versa.

"We are the first to show that the balance between soil water and energy input into the ecosystem determines whether the system is limited by precipitation or by temperature," says the study's lead author Yao Zhang, a former postdoc research scientist with Gentine and now a postdoc scholar at Lawrence Berkeley National Laboratory. "As temperature limitation diminishes, more soil water is needed to support increased vegetation activity, especially during the late growing season. CMIP5 models project future warming and drying especially during late season, both of which should further expand the regions with limited water, causing large variations and potential decreases in photosynthesis."
-end-
This study was a collaboration of Columbia Engineering, Columbia's Earth Institute, Lamont Doherty Earth Observatory, and NASA Jet proportion laboratory. The researchers are now using their dataset to better understand the lagged effect of precipitation and how to get early warning signals for drought.

About the Study

The study is titled: "Large and projected strengthening moisture limitation on end-of-season photosynthesis."

Authors are: Yao Zhanga,b,*, Nicholas Parazooc, A. Park Williamsd, Sha Zhoua,d,e, Pierre Gentinea,e,*

aDepartment of Earth and Environmental Engineering, Columbia Engineering
bClimate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
cCalifornia Institute of Technology, Jet Propulsion Laboratory
dLamont-Doherty Earth Observatory of Columbia University
eEarth Institute, Columbia University

The study was supported by NASA Advanced Information Systems Technology (AIST) #NASA NNH16ZDA001N-AIST, NASA ROSES Terrestrial hydrology #NNH17ZDA00IN-THP and NOAA MAPP #NA17OAR4310127.

The authors declare no financial or other conflicts of interest.

LINKS:

Paper: http://www.pnas.org/cgi/doi/10.1073/pnas.1914436117
DOI: 10.1073/pnas.1914436117
http://engineering.columbia.edu/
https://www.pnas.org/
https://engineering.columbia.edu/faculty/pierre-gentine
https://eee.columbia.edu/
http://ei.columbia.edu/

Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 220 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

Columbia University School of Engineering and Applied Science

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.