New gene-silencing enzyme discovered: Implications seen for treating aggressive cancers

April 14, 2002

PHILADELPHIA - Although the human genome is estimated to contain about 35,000 genes, only a fraction of these genes are turned on in a given cell type under normal circumstances. Precise control of gene expression is essential; many cancers have been linked to the improper activation of genes that should remain repressed, or silenced.

Now, researchers at The Wistar Institute report the identification of a new enzyme that is required for the silencing of certain genes. The enzyme functions by placing a molecular marker on a gene that causes the gene to be silenced. When this molecular marker is lost, certain genes may be improperly reactivated, which can result in cancer. Discovery of the enzyme could lead to new cancer therapies. A report on the research appears in the April 15 issue of Genes and Development.

"In this study we showed that when this enzyme is active at a particular gene, it places a molecular marker on the gene," says Frank J. Rauscher III, Ph.D., a professor at The Wistar Institute and deputy director of The Wistar Institute Cancer Center. "This molecular marker is crucial in silencing sets of genes."

The molecular marker is the methylation, or addition of a methyl group, to the DNA packaging proteins called histones on the gene that is to be silenced. When this molecular marker is lost, certain genes are no longer silenced but are instead reactivated, which may result in cancer. For instance, Rauscher notes that it has recently been shown that when you lose this molecular marker on a particular set of genes, a normally nonaggressive breast cancer can become very aggressive and metastatic.

"Now that we have found a new enzyme that is required for the silencing of certain genes," Rauscher says, "we believe it will be possible to create specific drugs that can either repress or activate gene expression through the targeting of this enzyme. This could lead to therapies for cancer, specifically for controlling the metastatic spread of cancer."

Rauscher says that his laboratory is now working to discover which genes in the human genome are silenced by this newly discovered enzyme. His research team is also interested in finding chemical inhibitors of this enzyme. Finally, they are studying breast, colon, and lung cancers to determine whether the gene that codes for this enzyme is mutated in these diseases.

In addition to senior author Rauscher, the lead author is David C. Schultz, Ph.D., formerly of The Wistar Institute and now with Case Western Reserve University, and co-authors are Kasirajan Ayyanathan, Ph.D., Dmitri Negorev, Ph.D., and Gerd G. Maul, Ph.D., all of The Wistar Institute. The research was supported by grants from the National Institutes of Health, the Irving A. Hansen Memorial Foundation, and The Susan G. Komen Breast Cancer Foundation. Early parts of this work were supported by the Pew Scholars Program in the Biomedical Sciences.
The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

News releases from The Wistar Institute are available to reporters by direct e-mail or fax upon request. They are also posted electronically to Wistar's home page (, to EurekAlert! (, an Internet resource sponsored by the American Association for the Advancement of Science.

The Wistar Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to