U-M student research may help astronauts burn fuel on Mars

April 14, 2004

ANN ARBOR, Mich.---One of the big problems with space travel is that one cannot over pack.

Suppose astronauts reach Mars. How do they explore the planet if they cannot weigh down the vessel with fuel for excursions?

A team of undergraduate aerospace engineering students at the University of Michigan is doing research to help astronauts make fuel once they get to Mars, and the results could bring scientists one step closer to manned or extended rover trips to the planet.

Their research proposal won the five-student team a highly competitive trip to NASA's Johnson Space Center in Houston to participate in the Reduced Gravity Student Flight Opportunities Program.

In Houston, the students conducted zero-gravity experiments using iodine as a catalyst to burn magnesium. Magnesium is a metal found on Mars that can be harvested for fuel---fossil fuels don't burn on Mars because of the planet's carbon dioxide (CO2) atmosphere, but metals do burn in a CO2 atmosphere.

The idea for the students' experiments evolved from previous research done by Margaret Wooldridge, an associate professor in mechanical engineering and the team's adviser. Wooldridge's research showed that while magnesium is a promising fuel source, burning magnesium alone---without a catalyst such as iodine---has several challenges. Preliminary results from the student experiments showed that using iodine as a catalyst helped make the magnesium burn better, said Arianne Liepa, aerospace engineering undergrad and team member.

The experiments also showed that using the iodine, magnesium, CO2 system worked even better in a microgravity environment. "That bodes well for a power source on Mars where the gravity is approximately one-third that of Earth," Wooldridge said.

The students---Greg Hukill, Arianne Liepa, Travis Palmer, Carlos Perez and Christy Schroeder---who conducted the experiments over a nine-day period in March, flew on a specially modified Boeing KC 135A turbojet transport. The plane flies parabolic arcs to produce weightless periods of 20 to 25 seconds at the apex of the arc.
-end-
For more information:
http://microgravityuniversity.jsc.nasa.gov
http://me.engin.umich.edu/people/faculty/mswool.shtml
http://www.engin.umich.edu/team/kc135/index.htm

University of Michigan

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.