Potential signs of 'interacting' dark matter suggest it is not completely dark after all

April 14, 2015

Astronomers believe they might have observed the first potential signs of dark matter interacting with a force other than gravity.

An international team of scientists, led by researchers at Durham University, UK, made the discovery using the Hubble Space Telescope and the European Southern Observatory's Very Large Telescope to view the simultaneous collision of four distant galaxies at the centre of a galaxy cluster 1.3 billion light years away from Earth.

Writing in the journal Monthly Notices of the Royal Astronomical Society today (Wednesday, April 15, 2015), the researchers said one dark matter clump appeared to be lagging behind the galaxy it surrounds.

They said the clump was currently offset from its galaxy by 5,000 light years (50,000 million million km) - a distance it would take NASA's Voyager spacecraft 90 million years to travel.

Such an offset is predicted during collisions if dark matter interacts, even very slightly, with forces other than gravity.

Computer simulations show that the extra friction from the collision would make the dark matter slow down, and eventually lag behind.

Scientists believe that all galaxies exist inside clumps of dark matter - called "dark" because it is thought to interact only with gravity, therefore making it invisible.

Nobody knows what dark matter is, but it is believed to make up about 85 per cent of the Universe's mass.

Without the constraining effect of its extra gravity, galaxies like our Milky Way would fling themselves apart as they spin.

In the latest study, the researchers were able to "see" the dark matter clump because of the distorting effect its mass has on the light from background galaxies - a technique called gravitational lensing.

The researchers added that their finding potentially rules out the standard theory of Cold Dark Matter, where dark matter interacts only with gravity.

Lead author Dr Richard Massey, Royal Society Research Fellow, in Durham University's Institute for Computational Cosmology, said: "We used to think that dark matter sits around, minding its own business.

"But if it slowed down during this collision, this could be the first dynamical evidence that dark matter notices the world around it.

"Dark matter may not be completely 'dark' after all."

The researchers note that while they appear to have observed the offsetting of dark matter, more investigation will be needed into other potential effects that could also produce a lag between the dark matter and the galaxy it hosts. Similar observations of more galaxies and computer simulations of galaxy collisions are under way to confirm the interpretation.

Team member Professor Liliya Williams, of the University of Minnesota, said: "Our observation suggests that dark matter might be able to interact with more forces than just gravity.

"The parallel Universe going on around us has just got interesting. The dark sector could contain rich physics and potentially complex behaviour."

Last month (March 2015), Dr Massey and colleagues published observations [1] showing that dark matter interacted very little during 72 collisions between galaxy clusters (each containing up to 1,000 galaxies).

Today's latest research concerns the motion of individual galaxies. Researchers say that the collision between these galaxies could have lasted longer than the collisions observed in the previous study - allowing even a small frictional force to build up over time [2].

Taken together, the two results bracket the behaviour of dark matter for the first time. Dark matter interacts more than this, but less than that. Dr Massey added: "We are finally homing in dark matter from above and below - squeezing our knowledge from two directions.

"Dark matter, we're coming for you."
-end-
The research was funded by the Royal Society, the Science and Technology Facilities Council and The Leverhulme Trust.

Footnotes

[1] http://www.spacetelescope.org/news/heic1506/

[2] The main uncertainty in the result is the timespan for the collision: the friction that slowed the dark matter could have been a very weak force over acting over about a billion years, or a relatively stronger force acting for "only" 100 million years.

Durham University

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.