Nav: Home

Europa's heaving ice might make more heat than scientists thought

April 14, 2016

PROVIDENCE, R.I. [Brown University] -- Jupiter's moon Europa is under a constant gravitational assault. As it orbits, Europa's icy surface heaves and falls with the pull of Jupiter's gravity, creating enough heat, scientists think, to support a global ocean beneath the moon's solid shell.

Now, experiments by geoscientists from Brown and Columbia universities suggest that this process, called tidal dissipation, could create far more heat in Europa's ice than scientists had previously assumed. The work could ultimately help researchers to better estimate the thickness of moon's outer shell.

The work is published in the June 1 issue of Earth and Planetary Science Letters.

The largest Jovian moons--Io, Europa, Ganymede and Callisto--were first discovered by Galileo in the early 1600s. When NASA sent spacecraft to Jupiter in the 1970s and 1990s, those moons proved to be full of surprises.

"[Scientists] had expected to see cold, dead places, but right away they were blown away by their striking surfaces," said Christine McCarthy, a faculty member at Columbia University who led this new research as a graduate student at Brown. "There was clearly some sort of tectonic activity--things moving around and cracking. There were also places on Europa that look like melt-through or mushy ice."

The only way to create enough heat for these active processes so far from the sun is through tidal dissipation. The effect, McCarthy says, is a bit like what happens when someone repeatedly bends a metal coat hanger.

"If you bend it back and forth, you can feel it making heat at the junction," she said. "The way it does that is that internal defects within that metal are rubbing past each other, and it's a similar process to how energy would be dissipated in ice."

However, the details of the process in ice aren't very well understood, and modeling studies that try to capture those dynamics on Europa had yielded some puzzling results, the researchers say.

"People have been using simple mechanical models to describe the ice," McCarthy said. While those calculations suggested liquid water under Europa's surface, "they weren't getting the kinds of heat fluxes that would create these tectonics. So we ran some experiments to try to understand this process better."

Working with Reid Cooper, professor of Earth, environmental and planetary sciences at Brown, McCarthy loaded ice samples into a compression apparatus. She subjected the samples to cyclical loads similar to those acting on Europa's ice shell. When the loads are applied and released, the ice deforms and then rebounds to a certain extent. By measuring the lag time between the application of stress and the deformation of the ice, McCarthy could infer how much heat is generated.

The experiments yielded surprising results. Modeling approaches had assumed that most of the heat generated by the process comes from friction at the boundaries between the ice grains. That would mean that the size of the grains influences the amount of heat generated. But McCarthy found similar results even when she substantially altered the grain size in her samples, suggesting that grain boundaries are not the primary heat-generators in the process.

The work suggests that most of the heat actually comes from defects that form in the ice's crystalline lattice as a result of deformation. Those defects, the research showed, create more heat than would be expected from the grain boundaries.

"Christine discovered that, relative to the models the community has been using, ice appears to be an order of magnitude more dissipative than people had thought," Cooper said.

More dissipation equals more heat, and that could have implications for Europa.

"The beauty of this is that once we get the physics right, it becomes wonderfully extrapolative," Cooper said. "Those physics are first order in understanding the thickness of Europa's shell. In turn, the thickness of the shell relative to the bulk chemistry of the moon is important in understanding the chemistry of that ocean. And if you're looking for life, then the chemistry of the ocean is a big deal."

McCarthy and Cooper hope that modelers will make use of these findings as they try to unravel the mysteries of Europa's hidden ocean.

"This provides modelers with a new physics to apply," McCarthy said.
-end-
The study was supported by the NASA Program in Planetary Geology and Geophysics (NNX06AD67G) and the NSF Program in Geophysics (EAR-1014476).

Brown University

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...