Nav: Home

Is risk-taking behavior contagious?

April 14, 2016

Why do we sometimes decide to take risks and other times choose to play it safe? In a new study, Caltech researchers explored the neural mechanisms of one possible explanation: a contagion effect.

The work is described in the March 21 online early edition of the Proceedings of the National Academy of Sciences.

In the study led by John O'Doherty, professor of psychology and director of the Caltech Brain Imaging Center, 24 volunteers repeatedly participated in three types of trials: a "Self" trial, in which the participants were asked to choose between taking a guaranteed $10 or making a risky gamble with a potentially higher payoff; an "Observe" trial, in which the participants observed the risk-taking behavior of a peer (in the trial, this meant a computer algorithm trained to behave like a peer), allowing the participants to learn how often the peer takes a risk; and a "Predict" trial, in which the participants were asked to predict the risk-taking tendencies of an observed peer, earning a cash prize for a correct prediction. Notably in these trials the participants did not observe gamble outcomes, preventing them from further learning about gambles.

O'Doherty and his colleagues found that the participants were much more likely to make the gamble for more money in the "Self" trial when they had previously observed a risk-taking peer in the "Observe" trial. The researchers noticed that after the subjects observed the actions of a peer, their preferences for risk-taking or risk-averse behaviors began to reflect those of the observed peer--a so-called contagion effect. "By observing others behaving in a risk-seeking or risk-averse fashion, we become in turn more or less prone to risky behavior," says Shinsuke Suzuki, a postdoctoral scholar in neuroscience and first author of the study.

To look for indications of risk-taking behavior in specific brain regions of subjects participating in the trials, the Caltech team used functional magnetic resonance imaging (fMRI), which detects brain activity.

By combining computational modeling of the data from the "Self" behavioral trials with the fMRI data, the researchers determined that a region of the brain called the caudate nucleus responds to the degree of risk in the gamble; for example, a riskier gamble resulted in a higher level of observed activity in the caudate nucleus, while a less risky gamble resulted in a lower level of activity. Additionally, the more likely the participants were to make a gamble, the more sensitively activity in the caudate nucleus responded to risk. "This showed that, in addition to the behavioral shift, the neural processing of risk in the caudate is also altered. Also, both the behavioral and neural responses to taking risks can be changed through passively observing the behavior of others," Suzuki says.

The "Predict" behavioral trials were designed to test whether a participant could also learn and predict the risk-taking preferences of an observed peer. Indeed, the researchers found that the participants could successfully predict these preferences--with the learning process occurring even faster if the participant's risk-taking preferences mirrored those of the peer. Furthermore, the fMRI data collected during the "Observe" trial showed that a part of the brain called the dorsolateral prefrontal cortex (dlPFC) was active when participants were learning about others' attitudes toward risk.

The researchers also found differences among participants in functional connectivity between the caudate nucleus and the dlPFC that were related to the strength of the contagion effect--meaning that these two brain regions somehow work together to make a person more or less susceptible to the contagiousness of risk-taking behavior. The work provides an explanation of how our own risk-taking behaviors can be influenced simply by observing the behaviors of others. This study, Suzuki says, is the first to demonstrate that a neural response to risk is altered in response to changes in risk-taking behavior.

"Our findings provide insight into how observation of others' risky behavior affects our own attitude toward risk," Suzuki says--which might help explain the susceptibility of people to risky behavior when observing others behaving in a risky manner, such as in adolescent peer groups. In addition, the findings might offer insight into the formation and collapse of financial bubbles. "The tendency of financial markets to collectively veer from bull markets to bear markets and back again could arise, in part, due to the contagion of observing the risk-seeking or risk-averse investment behaviors of other market participants," he says.

"The findings reported in this paper are part of a broader research goal at Caltech, in which we are trying to understand how the brain can learn from other people and make decisions in a social context," O'Doherty says. "Ultimately, if we can understand how our brains function in social situations, this should also enable us to better understand how brain circuits can go awry, shedding light on social anxiety, autism, and other social disorders."
-end-
The paper is titled, "Behavioral contagion during learning about another agent's risk-preferences acts on the neural representation of decision-risk." In addition to Suzuki and O'Doherty, other Caltech coauthors include instructional assistant Emily Jensen and visiting associate in finance Peter Bossaerts. The work was funded by the Japan Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad and the Caltech Conte Center for the Neurobiology of Social Decision Making, which is supported by the National Institute of Mental Health.

California Institute of Technology

Related Brain Articles:

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.