Nav: Home

Modeling a monarch butterfly's personal compass

April 14, 2016

In the fall, eastern North American monarch butterflies take the biggest trip of their lives to their wintering grounds in Mexico. The butterflies are genetically hardwired to fly southwest mainly using a time-compensated sun compass, which combines the time of day and the position of the sun to navigate. To understand how this information connects in the butterfly brain, researchers reporting April 14 in Cell Reports created a mathematical model that can reproduce the animals' internal calculations.

"The monarchs use a sun compass for migration, but the sun's position is not sufficient to determine the right direction. They need to combine that information with the time of day to know where to go," says Eli Shlizerman, an applied mathematician at the University of Washington.

Monarchs can use the sun as a point of reference and have a molecular timekeeping mechanism housed in their antennae. Basically, if they need to fly southwest in the morning, they fly with the sun to their left, and if they need to fly southwest in the afternoon, they orient the sun to their right, with corresponding adjustments throughout the day.

But, says Steven Reppert, a neuroscientist at the University of Massachusetts Medical School, "We still don't understand how the clock and sun compass talk to each other in a way that leads to oriented flight behavior. From a neurobiological perspective, it was a major question."

To start examining the process, Shlizerman and Daniel Forger, an applied mathematician at the University of Michigan, built a series of equations to model the butterflies' neural activity. After estimating the firing rates from neurons in the antennae and eyes, Shizerman and Forger extrapolated how such neurons might interact with each other in a simplified model. Then, they built equations that would indicate whether a given flight angle was correct or if the butterfly needed to steer left or right in order to face southwest.

The final model predicted the real-life behaviors of butterflies orienting themselves in a flight simulator at different times of day. "We looked carefully at a lot of different types of behaviors that you see in monarch butterfly flight, and the model was able to reproduce them," says Forger. "It was exciting."

One of the main findings from the model was the existence of a "separatrix angle," which changes position throughout the day and marks the point where a butterfly has to do a full rotation to re-orient itself. If this angle is narrow, close to the sun, then even a small disturbance to the butterfly's flight path might cause it to spin around multiple times before facing southwest again. But if the angle is wide, with the rotation point directly opposite the sun, the butterfly can efficiently steer left or right to correct its flight path with only minor shifts.

"The biggest thing we need to do now is define, in biological terms, what the model describes. We can use its parameters to help us dissect the circuitry involved in monarch navigation," says Reppert. "What this emphasizes is that these are not just pretty animals. They are a biological treasure trove."
-end-
Funding was provided grants from the National Institutes of Health, the National Science Foundation, the Air Force Office of Scientific Research, and the Washington Research Foundation Fund.

Cell Reports, Shlizerman et al.: "Neural integration underlying a time-compensated sun compass in the monarch butterfly" http://dx.doi.org/10.1016/j.celrep.2016.03.057

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Learn more: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Butterflies Articles:

UC biologist looks at butterflies to help solve human infertility
UC biologist helps decode the structural complexities of male butterfly ejaculate and co-evolving female reproductive tract.
1976 drought revealed as worst on record for British butterflies and moths
Scientists at the University of York have revealed that the 1976 drought is the worst extreme event to affect butterflies and moths in the 50 years since detailed records began.
Study reveals how pesticide use and climate affect monarch butterflies
An analysis of data in Illinois has found a link between higher county-level use of an herbicide called glyphosate and reduced abundance of adult monarch butterflies, especially in areas with concentrated agriculture.
Gehry's Biodiversity Museum -- favorite attraction for the butterflies and moths in Panama
Ahead of Gehry's Biodiversity Museum's opening in October 2014, Ph.D.
Female promiscuity in butterflies controls paternity
The eggs of some butterfly and moth species vary to give females control over the paternity of their offspring, according to new research published today.
Movement of rainforest butterflies restricted by oil palm plantations
Scientists at the University of York have found that oil palm plantations, which produce oil for commercial use in cooking, food products, and cosmetics, may act as a barrier to the movement of butterflies across tropical landscapes.
Butterflies: Agonistic display or courtship behavior?
A study shows that contests of butterflies occur only as erroneous courtships between sexually active males that are unable to distinguish the sex of the other butterflies.
Urbanization affects diets of butterflies: NUS study
A study led by researchers from the National University of Singapore revealed that most tropical butterflies feed on a variety of flower types, but those that are 'picky' about their flower diets tend to prefer native plants and are more dependent on forests.
Butterflies use differences in leaf shape to distinguish between plants
The preference of Heliconius butterflies for certain leaf shapes is innate, but can be reversed through learning.
Butterflies' diet impacts evolution of traits
A new study led by University of Minnesota researcher Emilie Snell-Rood finds that access to some nutrients may be a star player in shaping traits related to fitness such as fecundity and eye size over the long term.

Related Butterflies Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.